Tesis sobre el tema "Electron-transport layers"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte los 50 mejores tesis para su investigación sobre el tema "Electron-transport layers".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Explore tesis sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.
Mavroidis, Constantinos. "Electron transport in GaN epitaxial layers". Thesis, University College London (University of London), 2003. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.407135.
Texto completoKusumawati, Yuly. "Oxide and composite electron transport layers for efficient dye-sensitized solar cells". Thesis, Paris 6, 2015. http://www.theses.fr/2015PA066240/document.
Texto completoThree kinds of ETL have been developed and studied in this present work as a photoelectrode in DSSC. Those composed of (1) two kinds of TiO2-brookite nanoparticles, (TiO2_B1 and TiO2_B2), (2) the composite of anatase and graphene (TiO2_Gr) and (3) the nanorods like ZnO nanoparticles (ZnO_NR), respectively. All photoelectrode are prepared by doctor blading technique. The morphology of photoelectrodes have been characterized using transmission electron microscopy (TEM) and scanning electron microscopy (SEM). The layer thicknesses were measured using profilometry. For the film structural characterizations, a high-resolution X-ray diffractometer was used. The Fourier transform infrared (FTIR) and micro Raman measurement have been carried out to verify the TiO2_Gr composite preparation. The optical film properties (total transmission and total reflection) were recorded with a spectrophotometer equipped with an integrating sphere techniques. The cell performances were obtained by measuring the I-V curves of the cells under calibrated illumination. To achieve an in-deep understanding of the cell functioning, the impedance spectroscopy (IS) technique has been studied over a large applied potential range. By doing IS study, the electronic structure, charge carrier lifetime (tn), transport/collection time (ttr) and electron transport parameters of the layers have been determined. The carefully study of their properties has revealed not only their advantages but also their limitation. This information will be beneficial as a consideration for the future work
Tambwe, Kevin. "P- and e- type Semiconductor layers optimization for efficient perovskite photovoltaics". University of Western Cape, 2019. http://hdl.handle.net/11394/7414.
Texto completoPerovskite solar cells have attracted a tremendous amount of research interest in the scientific community recently, owing to their remarkable performance reaching up to 22% power conversion efficiency (PCE) in merely 6 to 7 years of development. Numerous advantages such as reduced price of raw materials, ease of fabrication and so on, have contributed to their increased popularity.
Bradley, Colin. "Understanding Charge Transport and Selectivitiy in Ionically Functionalized Fullerenes for Electron-Selective Interfacial Layers". Thesis, University of Oregon, 2018. http://hdl.handle.net/1794/23171.
Texto completo10000-01-01
Rushforth, Andrew William. "The transport properties of two dimensional electron gases in spatially random magnetic fields". Thesis, University of Nottingham, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.342029.
Texto completoSchubert, Marcel. "Elementary processes in layers of electron transporting Donor-acceptor copolymers : investigation of charge transport and application to organic solar cells". Phd thesis, Universität Potsdam, 2014. http://opus.kobv.de/ubp/volltexte/2014/7079/.
Texto completoDonator-Akzeptor (D-A) Copolymere haben das Feld der organischen Elektronik revolutioniert. Bestehend aus einer elektronen-reichen und einer elektronen-armen molekularen Einheit,ermöglichen diese Polymere die systematische Anpassung ihrer optischen und elektronischen Eigenschaften. Zu diesen zählen insbesondere die optische Bandlücke und die Lage der Energiezustände. Dabei lassen sie sich sehr vielseitig chemisch modifizieren, was zu einer imensen Anzahl an unterschiedlichen Polymerstrukturen geführt hat. Dies hat entscheidend dazu beigetragen, dass D-A-Copolymere heute in Bezug auf ihren Ladungstransport die Effizienz von anorganischen Halbleitern erreichen oder bereits übetreffen. Des Weiteren lassen sich diese Materialien auch hervorragend in Organischen Solarzellen verwenden, welche jüngst eine Effizienz von über 10% überschritten haben. Als Folge der beträchtlichen Anzahl an unterschiedlichen D-A-Copolymeren konnte das physikalische Verständnis ihrer Eigenschaften bisher nicht mit dieser rasanten Entwicklung Schritt halten. Dies liegt nicht zuletzt an der komplexen chemischen und mikroskopischen Struktur im Film, in welchem die Polymere in einem teil-kristallinen Zustand vorliegen. Um ein besseres Verständnis der grundlegenden Funktionsweise zu erlangen, habe ich in meiner Arbeit sowohl den Ladungstransport als auch die photovoltaischen Eigenschaften einer Reihe von prototypischen, elektronen-transportierenden D-A Copolymeren beleuchtet. Im ersten Teil wurden Copolymere mit geringfügigen chemischen Variationen untersucht. Diese Variationen führen zu einer starken Änderung des Ladungstransportverhaltens. Besonders auffällig waren hier die Ergebnisse eines Polymers, welches sehr ungewöhnliche transiente Strom-Charakteristiken zeigte. Die nähere Untersuchung ergab, dass in diesem Material elektrisch aktive Fallenzustände existieren. Dieser Effekt wurde dann benutzt um den Einfluss solcher Fallen auf transiente Messung im Allgemeinen zu beschreiben. Zusätzlich wurde der Elektronentransport in einem neuartigen Copolymer untersucht, welche die bis dato größte gemesse Elektronenmobilität für konjugierte Polymere zeigte. Darauf basierend wurde versucht, die neuartigen Copolymere als Akzeptoren in Organischen Solarzellen zu implementieren. Die Optimierung dieser Zellen erwies sich jedoch als schwierig, konnte aber erreicht werden, indem die Lösungseigenschaften der Copolymere untersucht und systematisch gesteuert wurden. Im Weiteren werden umfangreiche Untersuchungen zu den relevanten Verlustprozessen gezeigt. Besonders hervorzuheben ist hier die Beobachtung, dass hohe Effizienzen nur bei einer coplanaren Packung der Donator/Akzeptor-Kristalle erreicht werden können. Diese Struktureigenschaft wird hier zum ersten Mal beschrieben und stellt einen wichtigen Erkenntnisgewinn zum Verständnis von Polymersolarzellen dar.
Allen, William D. "Aspects of spin polarised transport". Thesis, University of Oxford, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.368082.
Texto completoSchubert, Marcel [Verfasser] y Dieter [Akademischer Betreuer] Neher. "Elementary processes in layers of electron transporting Donor-acceptor copolymers : investigation of charge transport and application to organic solar cells / Marcel Schubert. Betreuer: Dieter Neher". Potsdam : Universitätsbibliothek der Universität Potsdam, 2014. http://d-nb.info/1052682847/34.
Texto completoWhitfield, Thomas Britain. "An analysis of copper transport in the insulation of high voltage transformers". Thesis, University of Surrey, 2001. http://epubs.surrey.ac.uk/843581/.
Texto completoAversa, Pierfrancesco. "Primary Defects in Halide Perovskites : Effect on Stability and Performance for Photovoltaic Applications Effect of organic PCBM Electron transport Layers on natural and post-irradiation ageing of optical absorption and emission in methyl ammonium lead triiodide spin –coated on p-i-n Solar Sell Substrates Effect of organic PCBM Electron transport Layers on natural and post-irradiation ageing of optical absorption and emission in triple cation lead mixed halide perovskite spin –coated on p-i-n Solar Sell Substrates Electron Irradiation Induced Ageing Effects on Radiative Recombination Properties of methylammonium lead triiodide layers on p-i-n solar cell substrates Electron Irradiation Induced Ageing Effects on Methylammonium Lead Triiodide Based p-i-n Solar Cells Electron Irradiation Induced Ageing Effects on Radiative Recombination Properties of Quadruple Cation Organic-Inorganic Perovskite Layers". Thesis, Institut polytechnique de Paris, 2020. http://www.theses.fr/2020IPPAX050.
Texto completoDuring the last eleven years, Hybrid Organic Inorganic Perovskites (HOIPs) materials have emerged as an exciting topic of research for potential application in solar cell technologies due to their outstanding optoelectronic properties and processing advantages. However, HOIPs materials suffer from several drawbacks with, in peculiar, their lack of stability under operational conditions (light, bias, environment…). To improve this stability is one of the biggest challenges to be addressed before commercialization. The general formula for HOIPs is (A1,A2,A3,A4)Pb(X1,X2)3, where the A sites can be occupied by a distribution of 1 to 4 metallic/organic cations and X sites with halide anions. The role of native vacancy defects has been questioned as a possible cause for HOIPs solar cells degradation. The aim of this work is to understand the defect role in long term stability of HOIPs materials for photovoltaics. For this reason, primary defects were introduced in a controlled way via high energy electron irradiation (1MeV) in sets of layers and solar cells (SCs) fabricated using various HOIPs compounds. Those include the photovoltaic HOIPs prototype, MAPbI3 (A1PbX13), and emergent triple or quadruple cation mixed halide HOIPs, (CsMAFA)Pb(I1-xBrx)3 (A3PbX23) or (GACsMAFA)Pb(I1-yBry)3 (A4PbX23). The HOIPs layers are fabricated according to the same procedure as the HOIPs active SC layers and, subsequently, treated in similar conditions. For A1PbX13 and A3PbX23, the solar cells are of the p-i-n structure with organic hole and electron transport layer (HTL/ETL). The HOIPs layers are deposited on the glass/ITO/HTL (PEDOT:PSS) substrate without or with the top ETL layer (PCBM). For A4PbX23, the solar cells are of the n-i-p type with inorganic ETL (TiO2) and organic HTL (Spiro-OMeTAD) layers. The layers are directly deposited on glass without the ETL layer.Positron Annihilation Spectroscopy (PAS) gives direct evidence for native vacancy-type defects and irradiation induced ones in layers of each HOIP compound. The energy dependence of absorbance shows that natural and after irradiation ageing generates different defect populations in each HOIP compound. These populations strikingly also differ depending on the absence or presence of the top ETL layer for the A1PbX13 and A3PbX23 compounds. The defect populations evolve over ageing duration as long as 3 months. The prominent effects of ageing include (i) band gap modification, (ii) tailing of conduction/valence band extrema and (iii) optical absorption via deep subgap electronic levels. Illumination effects under laser also vary with ageing for each HOIP compound. Asymmetric photoluminescence (PL) peaks in each compound under continuous laser illumination reflect that radiative emission involves Gaussian emission rays with energy, FWHM and height evolving with illumination time. The emission transitions involve shallow localized electronic levels in A3PbX23 and A4PbX23 and resonant ones in A1PbX13. These electronic levels are attributed to specifically illumination-induced defect populations. Natural and after irradiation ageing result in PL decay lifetime spectra resolved into one or two exponential decay components. The decay components number and lifetime are strongly affected by the initial production of irradiation defects and HOIPs composition. Such effects last over 3 months at least in A4PbX23. The p-i-n solar cells exhibit most striking irradiation ageing induced photovoltaics performance. The External Quantum Efficiency (EQE versus photon energy) and the photovoltaic performance (I-V under illumination) of the irradiated solar cells have higher values than those in the reference SCs after 6 to 12 months of ageing. This gives evidence that defect engineering via high energy electron irradiation has a potential for providing innovative processing pathways to enhance the long-term stability of HOIPs photovoltaic performance
Hu, Zhelu. "Investigations towards more performing and more stable solution-processed hybrid perovskite solar cells". Electronic Thesis or Diss., Sorbonne université, 2020. http://www.theses.fr/2020SORUS329.
Texto completoIn this Ph.D. thesis,I have been focused to investigate optimizations and strategies concerning the electron transportlayer (ETL),the hybrid perovskite active layer, and their interfaces in functional perovskite solar cells. On the investigatior of ETLs, I have performed two works: One is on the comparison of a simplified ETL-free planar perovskite solar cells,architecture to that with a planar TiO2 ETL (described in Chapter 2); Another work is on the comparison of perovskite,solat cells with well-oriented one-dimension TiO2 nanocolumn (NA) ETL to those with a planar TiO2 ETL (Chapter 3).On,the investigations of the perovskite active layer, mixed-cation and mixed-halide perovskite was applied into three,relevant works: (1) I optinized and maximized the grain size of the perovskite active layer (Chapter 2); (2) I studied nano-,structured hybrid perovskite fims and their light-harvesting enhancement (Chapter 6): (3) I investigated the thermal,properties of mixed-cation perovskite thin films to understand their improved thermal stability compared to,methylammonium lead iodide (MAPbi3) perovskite (Chapter 4). In addition, I studied passivation methods to alleviate the interfacial charge recombination and to improve the stability of perovskite solar cells (chapter 5)
Cupido, Ian Patrick. "Nitrogen and argon treatment of titanium dioxide nanowire arrays". University of Western Cape, 2021. http://hdl.handle.net/11394/8040.
Texto completoTiO2 nanoparticle films are important electron transport layers (ETLs) in photovoltaics such as dye-sensitised, perovskite and polymer hetero-junction solar cells. These films, however, have significant electron trap-sites as a result of the large density of oxygen vacancies present in nano-sized TiO2. These trap-sites cause electron-hole recombination and ultimately lower photon-to-current conversion efficiency of the underlying cell during operation. Doping the TiO2 lattice with low atomic number elements such as nitrogen is a proven method to overcoming the charge transport inefficiency of TiO2 ETLs; another is the use of one-dimensional (1D) nanowires (NWs), instead of nanoparticles.
Pawar, Krantikumar Subhash. "Ab Initio Modeling of an Electron Transport Layer Interface in Hybrid Perovskite Solar Cells". Wright State University / OhioLINK, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=wright1610125331928229.
Texto completoSugiura, Kenji, Hiromichi Ohta, Shin-ichi Nakagawa, Rong Huang, Yuichi Ikuhara, Kenji Nomura, Hideo Hosono y Kunihito Koumoto. "Anisotropic carrier transport properties in layered cobaltate epitaxial films grown by reactive solid-phase epitaxy". American Institite of Physics, 2009. http://hdl.handle.net/2237/12628.
Texto completoWidmer, Johannes. "Charge transport and energy levels in organic semiconductors". Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2014. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-154918.
Texto completoOrganische Halbleiter sind eine neue Schlüsseltechnologie für großflächige und flexible Dünnschichtelektronik. Sie werden als dünne Materialschichten (Sub-Nanometer bis Mikrometer) auf großflächige Substrate aufgebracht. Die technologisch am weitesten fortgeschrittenen Anwendungen sind organische Leuchtdioden (OLEDs) und organische Photovoltaik (OPV). Zur weiteren Steigerung von Leistungsfähigkeit und Effizienz ist die genaue Modellierung elektronischer Prozesse in den Bauteilen von grundlegender Bedeutung. Für die erfolgreiche Optimierung von Bauteilen ist eine zuverlässige Charakterisierung und Validierung der elektronischen Materialeigenschaften gleichermaßen erforderlich. Außerdem eröffnet das Verständnis der Zusammenhänge zwischen Materialstruktur und -eigenschaften einen Weg für innovative Material- und Bauteilentwicklung. Im Rahmen dieser Dissertation werden zwei Methoden für die Materialcharakterisierung entwickelt, verfeinert und angewandt: eine neuartige Methode zur Messung der Ladungsträgerbeweglichkeit μ und eine Möglichkeit zur Bestimmung der Ionisierungsenergie IE oder der Elektronenaffinität EA eines organischen Halbleiters. Für die Beweglichkeitsmessungen wird eine neue Auswertungsmethode für raumladungsbegrenzte Ströme (SCLC) in unipolaren Bauteilen entwickelt. Sie basiert auf einer Schichtdickenvariation des zu charakterisierenden Materials. In einem Ansatz zur räumlichen Abbildung des elektrischen Potentials (\"potential mapping\", POEM) wird gezeigt, dass das elektrische Potential als Funktion der Schichtdicke V(d) bei einer gegebenen Stromdichte dem räumlichen Verlauf des elektrischen Potentials V(x) im dicksten Bauteil entspricht. Daraus kann die Beweglichkeit als Funktion des elektrischen Felds F und der Ladungsträgerdichte n berechnet werden. Die Auswertung ist modellfrei, d.h. ein Modell zum Angleichen der Messdaten ist für die Berechnung von μ(F, n) nicht erforderlich. Die Messung ist außerdem unabhängig von einer möglichen Injektionsbarriere oder einer Potentialstufe an nicht-idealen Kontakten. Die gemessene Funktion μ(F, n) beschreibt die effektive durchschnittliche Beweglichkeit aller freien und in Fallenzuständen gefangenen Ladungsträger. Dieser Zugang beschreibt den Ladungstransport in energetisch ungeordneten Materialien realistisch, wo eine klare Unterscheidung zwischen freien und Fallenzuständen nicht möglich oder willkürlich ist. Die Messung von IE und EA wird mithilfe temperaturabhängiger Messungen an Solarzellen durchgeführt. In geeigneten Bauteilen mit einem Mischschicht-Heteroübergang (\"bulk heterojunction\" BHJ) ist die Leerlaufspannung Voc im gesamten Messbereich oberhalb 180K eine linear fallende Funktion der Temperatur T. Es kann bestätigt werden, dass die Extrapolation zum Temperaturnullpunkt V0 = Voc(T → 0K) mit der effektiven Energielücke Egeff , d.h. der Differenz zwischen EA des Akzeptor-Materials und IE des Donator-Materials, übereinstimmt. Die systematische schrittweise Variation einzelner Bestandteile der Solarzellen und die Überprüfung des Einflusses auf V0 bestätigen die Beziehung V0 = Egeff. Damit kann die IE oder EA eines Materials bestimmt werden, indem man es in einem BHJ mit einem Material kombiniert, dessen komplementärer Wert bekannt ist. Messungen per Ultraviolett-Photoelektronenspektroskopie (UPS) und inverser Photoelektronenspektroskopie (IPES) werden damit bestätigt, präzisiert und ergänzt. Die beiden entwickelten Messmethoden werden auf organische Halbleiter aus kleinen Molekülen einschließlich Mischschichten angewandt. In Mischschichten aus Zink-Phthalocyanin (ZnPc) und C60 wird eine Löcherbeweglichkeit gemessen, die sowohl thermisch als auch feld- und ladungsträgerdichteaktiviert ist. Wenn das Mischverhältnis variiert wird, steigt die Löcherbeweglichkeit mit zunehmendem ZnPc-Anteil, während die effektive Energielücke unverändert bleibt. Verschiedene weitere Materialien und Materialmischungen werden hinsichtlich Löcher- und Elektronenbeweglichkeit sowie ihrer Energielücke charakterisiert, einschließlich bisher wenig untersuchter hochverdünnter Donator-Systeme. In allen Materialien wird eine deutliche Feldaktivierung der Beweglichkeit beobachtet. Die Ergebnisse ermöglichen eine verbesserte Beschreibung der detaillierten Funktionsweise organischer Solarzellen und unterstützen die künftige Entwicklung hocheffizienter und optimierter Bauteile
Sanderson, Douglas Grant. "An investigation of the relationship between the structure and function of the blue copper electron transport protein plastocyanin using thin-layer, steady-state spectroelectro-chemistry /". The Ohio State University, 1985. http://rave.ohiolink.edu/etdc/view?acc_num=osu1487262513407884.
Texto completoChikara, Shalinee. "A SYSTEMATIC STUDY OF THERMODYNAMIC AND TRANSPORT PROPERTIES OF LAYERED 4D AND 5D CORRELATED ELECTRON SYSTEMS". UKnowledge, 2011. http://uknowledge.uky.edu/gradschool_diss/843.
Texto completoAli, Fawad. "Investigation of metal oxides thin films developed by PVD system for perovskite solar cells". Thesis, Queensland University of Technology, 2019. https://eprints.qut.edu.au/127139/1/Fawad_Ali_Thesis.pdf.
Texto completoMatta, Sri Kasi Venkata Nageswara Rao. "Computational exploration of two-dimensional (2D) materials for solar energy applications". Thesis, Queensland University of Technology, 2019. https://eprints.qut.edu.au/134244/1/Sri%20Kasi%20Venkata%20Nageswara%20Rao%20Matta%20Thesis_Redacted.pdf.
Texto completoFournier, Olivier. "Synthèse par ALD et caractérisation de couches extractrices d'électrons pour application dans les cellules solaires à base de pérovskite". Electronic Thesis or Diss., Université Paris sciences et lettres, 2021. http://www.theses.fr/2021UPSLC025.
Texto completoPerovskite solar cells have sparked a large interest in the photovoltaic community in the last 10 years due to their expedient optoelectrical properties, their vast scope of applications and their economical attractiveness.They are expected to reach the market by 2023, but challenges have to be tackled first, among which upscale and stability issues.To do so, a strategy is to work on the charge transport layers.They need to ensure a high selectivity towards one charge carrier, and have a good interface.Atomic layer deposition is an industrial deposition technique which allows for the synthesis of a large variety of materials.ALD layers are dense, homogeneous, conformal, pinhole-free and their thickness and composition can be controlled at the nano-scale.ALD hence appears as an ideal candidate to deposit the charge extraction layers.This thesis focuses on the development and on the characterization of various oxides by ALD.SnO2 and TiO2 have been developed at the Institut Photovoltaïque d'Île-de-France (IPVF) with two different processes for each material.Their properties in regard of an integration in perovskite solar cells as inorganic electron transport layers have been explored, and one process for each material has been chosen.The advantageous integration of a 15 nm-thick ALD-TiO2 layer has been demonstrated as compact blocking layer in a mesoporous architecture, and compared to a blocking layer deposited by spray pyrolysis.Similar power conversion efficiencies (PCE) up to 19% have been achieved, with a higher homogeneity of the ALD layer leading to a better reproducibility of the results now used in the baseline production at IPVF.The integration of ALD-SnO2 in planar structures is also discussed.The 10 nm-thick layer alone was found to give mediocre efficiencies due to a lack of fill factor.The addition of an organic interlayer solved this issue allowing for PCE up to 16%.Finally an analysis of the interface between ALD-ZnO modified by phosphonic acid derivatives and a perovskite absorber is proposed.The organization of the molecules at the surface of ZnO and their impact on the perovskite have been determined, but the performances of full devices are poor
Satter, Md Mahbub. "Design and theoretical study of Wurtzite III-N deep ultraviolet edge emitting laser diodes". Diss., Georgia Institute of Technology, 2014. http://hdl.handle.net/1853/53042.
Texto completoLiu, Guoduan. "Fabrication and Characterization of Planar-Structure Perovskite Solar Cells". UKnowledge, 2019. https://uknowledge.uky.edu/ece_etds/137.
Texto completoMadani, Sepideh Sadat. "Investigation of charge transport metal oxides for efficient and stable perovskite solar cells". Thesis, Queensland University of Technology, 2022. https://eprints.qut.edu.au/235892/1/Sepideh%2BSadat%2BMadani%2BThesis%282%29.pdf.
Texto completoVergnat, Michel. "Hydrogénation d'alliages semi-conducteurs amorphes : Structure et propriétés électroniques des alliages amorphes hydrogènes SI::(1-X)SN::(X):H". Nancy 1, 1988. http://www.theses.fr/1988NAN10322.
Texto completoOu, Cheng-Chi y 歐政佶. "Anisotropy of Electron Transport in Few-Layers ReSe2". Thesis, 2017. http://ndltd.ncl.edu.tw/handle/r6222h.
Texto completo國立交通大學
電子物理系所
106
In this thesis, we used mechanical exfoliation to produce few-layers rhenium selenide (ReSe2) flakes on a silicon wafer covered by 300-nm thick silicon dioxide. Standard electron-beam lithography and thermal evaporation were used to pattern gold (Au) electrodes on ReSe2 flakes. The as-fabricated field effect transistor (FET) devices of ReSe2 were annealed in a high vacuum to improve the metal contact and to reduce the contact resistance. The devices were then electrically characterized. At room temperature, ReSe2 reveals itself as a n-type semiconductor, showing an on-off ratio of current up to 106. We studied electron transport in the ReSe2 FET devices in a wide temperature range from 80 K to 600 K. At a temperature below 200 K, electron transport in ReSe2 is well described by the theory of two-dimensional Mott’s variable range hopping. In this temperature range, we have discovered a phase transition from an insulator to a metallic state with increasing carrier concentration, adjusted by the back-gating voltage. As a temperature in the range between 300 K and 500 K, electron transport in ReSe2 is well described by thermally activated transport. When the temperature is higher than 500 K, the few-layers ReSe2 flakes changes from semiconducting to metallic behaviors once more. It reveals another insulator-to-metal transition at such a high temperature. This transition could originates from the electron-phonon interactions. ReSe2 is known for its anisotropic electrical property. Here we make multiple probes to measure electrical properties in different lattice orientations. We measured transfer characteristics of ReSe2 FET devices in several different orientations. As a first step, we set the orientation of 0° as the direction showing the highest mobility. We found that the direction of the lowest mobility is always exhibiting at 90°. In addition, we studied the anisotropy of electron transport at temperatures from 80 to 300 K. We learned that the anisotropy effect in ReSe2 only gives a different magnitude of conductance in different orientation while the mechanism of electron transport is the same in all directions.
Lin, Hsi-Kuei y 林熙貴. "Effects of A Block Copolymer–tuned Fullerene Electron Transport Layer and Dual Nanocomposite Carrier Transport Layers for Inverted Planar Perovskite Solar Cells". Thesis, 2018. http://ndltd.ncl.edu.tw/handle/4z7ac8.
Texto completo國立交通大學
材料科學與工程學系所
106
In photovoltaic devices, more effective transfer of dissociated electrons and holes from the active layer to the respective electrodes will result in higher fill factors and short-circuit current densities and, thus, enhanced power conversion efficiencies (PCEs). Planar perovskite photovoltaics feature an active layer that can provide a large exciton diffusion length, reaching several micrometers, but require efficient carrier transport layers for charge extraction. In the first part study, we enhanced the PCE of perovskite solar cells by employing an electron transfer layer (ETL) comprising [6,6]phenyl-C61-butyric acid methyl ester (PC61BM) and, to optimize its morphology, a small amount of the block copolymer polystyrene-b-poly(ethylene oxide) (PS-b-PEO), positioned on the perovskite active layer. When incorporating 0.375 wt % PS-b-PEO into PC61BM, the PCE of the perovskite photovoltaic device increased from 9.4% to 13.4%, a relative increase of 43%, because of a large enhancement in the fill factor of the device. To decipher the intricate morphology of the ETL, we used synchrotron grazing-incidence small-angle X-ray scattering for determining the PC61BM cluster size, atomic force microscopy and scanning electron microscopy for probing the surface, and transmission electron microscopy for observing the aggregation of PC61BM in the ETL. We found that the interaction between PS-b-PEO and PC61BM resulted in smaller PC61BM clusters that further aggregated into dendritic structures in some domains, a result of the similar polarities of the PS block and PC61BM; this behavior could be used to tune the morphology of the ETL. The optimal PS-b-PEO-mediated PC61BM cluster size in the ETL was 17 nm, a large reduction from 59 nm for the pristine PC61BM layer. This approach of incorporating a small amount of nanostructured block copolymer into a fullerene allowed us to effectively tune the morphology of the ETL on the perovskite active layer and resulted in enhanced fill factors of the devices and thus their device efficiency. For the second part study, we employed two nanocomposite carrier transfer layers—a ETL comprising PC61BM doped with the small molecule 4,7-diphenyl-1,10-phenanthroline (Bphen), to enhance the electron mobility, and a hole transfer layer (HTL) comprising poly(3,4-ethylenedioxythiophene):polystyrenesulfonate (PEDOT:PSS) doped with molybdenum disulfide (MoS2) nanosheets, to enhance the hole mobility. We used ultraviolet photoelectron spectroscopy to determine the energy levels of these composite ETLs and HTLs; atomic force microscopy and scanning electron microscopy to probe their surface structures; and transmission electron microscopy and synchrotron grazing-incidence small-angle X-ray scattering to decipher the structures of the ETLs. Adding a small amount (less than 1%) of Bphen allowed us to tune the energy levels of the ETL and decrease the size of the PC61BM clusters and, therefore, generate more PC61BM aggregation domains to provide more pathways for electron transport, leading to enhanced PCEs of the resulting perovskite devices. We used quantitative pump-probe data to resolve the carrier dynamics from the perovskite to the ETL and HTL, and observed a smaller possibility of carrier recombination and a shorter injection lifetime in the perovskite solar cell doubly modified with carrier transport layers, resulting in an enhancement of the PCE. The PCE reached 16% for a planar inverted perovskite device featuring an ETL incorporating 0.5 wt% Bphen within PC61BM and 0.1 wt% MoS2 within PEDOT:PSS; this PCE is more than 50% higher than the value of 10.2% for the corresponding control device.
Chang, Chun-Jung y 張峻榮. "ZnO nanocrystals incorporating PEIE/polyfluorene electrolyte as electron transport layers for cesium-containing perovskite light-emitting devices". Thesis, 2019. http://ndltd.ncl.edu.tw/handle/5bkvhq.
Texto completo國立交通大學
照明與能源光電研究所
107
In this work, we demonstrate inverted perovskite light-emitting devices (PeLEDs) based on ZnO nanocrystals (NCs) and cesium lead bromide (CsPbBr3) film as the electron transport and emission layers, respectively. A polyethyleneimine ethoxylated (PEIE) and/or an ionic polyfluorene electrolyte containing trimethylammonium hexafluorophosphate groups (namely P2-PF6) were introduced between ZnO NCs and CsPbBr3 film to enhance electron injection. The introduction of the PEIE/P2-PF6 bilayer can effectively improve CsPbBr3 coverage and morphology, thereby reducing current leakage in PeLEDs. Meanwhile, the improved CsPbBr3 film showed better photoluminescence, owing to anti-quenching capability of the PEIE/P2-PF6 and prolonged carrier lifetime. Herein, the PeLEDs with the structure ITO/ZnO NCs/ PEIE/P2-PF6/CsPbBr3 film/poly(9,9-dioctylfluorene-co-N-(4-butylphenyl)diphenyl amine) (TFB)/Au were fabricated, employing TFB as the hole transport layer. The PeLED based on the PEIE/P2-PF6 showed a turn-on voltage of 2.8 V, a max luminance of 3,927 cd/m2 and max current efficiency of 0.2 cd/A that was significantly higher than those without PEIE/P2-PF6 bilayer.
Chittawanij, Apisit y 艾比西. "The Study of Electron Transport Layers in Organic Light-Emitting Diodes by Thermal Evaporation and Stamping in Solution Processes". Thesis, 2015. http://ndltd.ncl.edu.tw/handle/jzxu39.
Texto completo國立虎尾科技大學
光電工程系光電與材料科技博士班
104
This dissertation is about the engineering of high performance OLEDs, which includes the electron transport layer thermal evaporation and stamping in OLED solution-processes. The following work is included in this dissertation: (i) An n-type doping system of tris(8-hydroxy-quinolinato) aluminum (Alq3) doped 2-(hydroxyl) quinolone lithium (Liq) in hybrid white OLEDs is developed and its device performances are compared with the conventional device. The maximum current efficiency of 23.2 cd/A and power efficiency of 7.4 lm/W at 20 mA/cm2 were obtained from the n-type doping HWOLED device. (ii) White OLEDs based on phosphorescent emitters are regarded as potential candidates for future lighting and display applications. In this study three phosphorescent dyes are incorporated, iridium(III) [bis(4,6-difuoro phenyl)-pyridinato-N,C2′] picolinate (FIrpic), tris[2-phenylpyridinato-C2,N] iridium (III) (Ir(ppy)3) and bis[2-(1-isoquinolinyl-N) phenyl-C](2,4-pentanedionato-O2,O4) iridium(III) (Ir(piq)2 acac), into a host of 4,4′-Bis(N-carbazolyl)-1,1′-biphenyl (CBP) to achieve a simple single-emitting white OLED layer using the solution process. The current and power efficiencies of the blue device with FIrpic 20 wt% in chlorobenzene were 2.95 and 0.89 lm/W at 20 mA/cm2. The current efficiency of 3.1 cd/A at 20 mA/cm2 and the CIE coordinates of (0.31, 0.32) at 1000 cd/m2 were obtained from the white device. (iii) To achieve high-performance OLEDs using solution-processing, uniform amorphous film formation is a very important prerequisite, which depends strongly on the solution-process materials. Highly efficient flexible blue OLEDs were fabricated by solution-processing commercial small molecules as the mixed-hosts. The hole transporting 4,4′ ,4″ -tri(N-carbazolyl)triphenylamine (TCTA) doped with the host 2,6-bis(3-(9H- carbazol-9-yl)phenyl)pyridine (26DCzPPy) as the solution-processed mixed-host for flexible blue OLED was investigated. The device with TCTA doped host exhibits the luminance of 2800 cd/m2, current density of 14.00 cd/A and power efficiency of 4.3 lm/W at 20 mA/cm2. (iv) Efficient multilayered flexible blue OLEDs were fabricated using the stamping method with PDMS and release film as transfer film. In order to overcome the mixing problem that occurs between the organic layers during the solution-processes, the stamping method was utilized on a small molecule layer. At the current density of 20 mA/cm2, the flexible blue OLED with PDMS as transfer film stamping device shows current and power efficiencies of 5.2 cd/A and 1.5 lm/W, respectively. The multilayered flexible blue OLEDs manufactured using the proposed stamping method presented significantly over spin-coated devices.
Huang, Yi-Jiun y 黃義鈞. "Doping Zinc Oxide with Molybdenum or Tungsten Disulfide Nanosheets as Electron Transport Layers for Polymer with Fullerene or Small Molecule Photovoltaics". Thesis, 2019. http://ndltd.ncl.edu.tw/handle/c7z7k5.
Texto completo國立交通大學
材料科學與工程學系所
107
In organic photovoltaic (OPV) devices, more effective transfer of dissociated electrons and holes from the active layer to the respective electrodes will result in higher fill factors (FF) and short-circuit current densities (Jsc) and, thus, enhanced power conversion efficiencies (PCE). The PCE of OPVs is affected not only by active layer but also transport layer. In my study, I specialize in developing the electron transport layer (ETL) by doping two-dimensional (2D) transition-metal dichalcogenide (TMD) materials for OPV devices. In the first part study, we incorporated molybdenum disulfide (MoS2) nanosheets into sol–gel processing of zinc oxide (ZnO) to form ZnO:MoS2 composites for use as ETLs in inverted polymer solar cells featuring a binary bulk heterojunction active layer. We could effectively tune the energy band of the ZnO:MoS2 composite film from 4.45 to 4.22eV by varying the content of MoS2 up to 0.5 wt%, such that the composite was suitable for use in bulk heterojunction photovoltaic devices based on poly[bis(5-(2-ethylhexyl)thien-2-yl)benzodithiophene–alt–(4-(2-ethylhexyl)-3-fluorothienothiophene)-2-carboxylate-2,6-diyl)] (PTB7-TH):phenyl-C71-butryric acid methyl ester (PC71BM). In particular, the PCE of the PTB7-TH:PC71BM (1:1.5, w/w) device incorporating the ZnO:MoS2 (0.5 wt%) composite layer as the ETL was 10.1%, up from 8.8% for the corresponding device featuring ZnO alone as the ETL—a relative increase of 15%. Incorporating a small amount of MoS2 nanosheets into the ETL altered the morphology of the ETL and resulted in enhanced current densities, fill factors, and PCEs for the devices. We used ultraviolet photoelectron spectroscopy (UPS), synchrotron grazing-incidence wide-/small-angle X-ray scattering (GIWAXS/GISAXS), atomic force microscopy (AFM), and transmission electron microscopy (TEM) to characterize the energy band structures, internal structures, surface roughness, and morphologies, respectively, of the ZnO:MoS2 composite films. For the second part study, a new universal ETL that involves doping hydrogen-plasma treated tungsten disulfide (WS2) nanosheets into ZnO for polymer/fullerene or small molecule OPVs was prepared. A hydrogen-plasma treatment was used to alter the structures of WS2 nanosheets such that the W6+ content was converted into W4+; then ZnO:WS2 nanosheets composites were prepared to form ETLs. The energy band of the ZnO:WS2 films could be tuned from 5.15 to 4.60 eV by varying the concentration of the WS2 nanosheets up to 0.5 wt%. It was found that ZnO:WS2 ETLs exhibited superior charge transport properties than those of the pristine ZnO layer because of the structure changes, as determined from the X-ray scattering characterizations. OPVs incorporating active layers of PTB7-TH/PC71BM and PTB7-TH/IDIC blends exhibited their power conversion efficiencies of 10.3% and 6.7%, respectively, with the incorporation of 0.3 wt% of the WS2 nanosheets, up from 8.9% and 5.4% for the corresponding devices featuring pristine ZnO—relative increases of 16% and 24%, respectively. This study demonstrates the effectiveness of hydrogen-plasma treatment for altering the surface structures of 2D TMD nanosheets, and paves a way for the composite ETLs for use in OPVs.
Li, Cheng-Wei y 李丞偉. "Modify TiOx electron transport layer of organic solar cells". Thesis, 2012. http://ndltd.ncl.edu.tw/handle/36270723548232476106.
Texto completoSiao, Ming-Deng y 蕭名登. "Surface Electron Accumulation and Electronic Transport in MoS2 Layer Semiconductors". Thesis, 2017. http://ndltd.ncl.edu.tw/handle/8qzu62.
Texto completo國立臺灣科技大學
應用科技研究所
105
Surface electron accumulation (SEA) and thickness-dependent electric properties in the molybdenum disulfide (MoS2) two-dimensional (2D) nanostructures have been observed and investigated. The MoS2 nanoflakes fabricated by mechanical exfoliation exhibit several orders of magnitude higher conductivity than their bulk counterparts. The carrier activation energy of nanostructures is lower than that of the bulk counterparts. The transfer length method was used to determine the current transport in MoS2 following a 2D behavior rather than the conventional 3D mode. Scanning tunneling microscopy measurements confirmed the presence of surface electron accumulation (SEA) in this layer material. Notably, the pronounced n-doping characteristic can be easily removed by producing a fresh surface through mechanical exfoliation. Long-term exposure to air can transform the intrinsic fresh surface into a metallic-like surface, indicating that SEA is not inherent. The FET measurement indicates that the MoS2 nanoflakes with fresh surface exhibit higher mobility and lower electron concentration compare to the nanoflakes with non-fresh surface. A more significant surface scattering in the non-fresh MoS2 nanoflakes was proposed.
Lin, Guan-Hong y 林冠宏. "Studies on electron and hole transport layer in polymer solar cell". Thesis, 2010. http://ndltd.ncl.edu.tw/handle/60348014300394884579.
Texto completo國立清華大學
化學工程學系
98
In recent years, polymer solar cells have become an important issue, because of attention to alternative energy resources. For polymer solar cells, the morphology of active layer and the series resistance both play important roles in designing highly efficient solar cells.Therefore, the influence of these two factors on efficiency of polymer solar cells based on poly(3-hexylthiophene) (P3HT) blended with [6,6]-pheneyl-C61 butyric acid methyl ester (PCBM) as the active layer is investigated in this thesis. In the first part of this thesis, we use thermal annealing and solvent annealing approach to change the active layer morphology. Under the optimal condition, the device efficiency of 3.75 % and 4 % are achieved for thermal annealing and solvent annealing. In the second part of this thesis, a water-soluble polyaniline, sulfonic acid ring substituted polyaniline (SPAN), which is synthesized in our laboratory, is adopted as a hole transport layer in the polymer solar cells.The device efficiency of 3.75 % is achieved which is similar to device with PEDOT:PSS as a hole transport layer (3.9 %), and indicates that SPAN has opportunity to substitute PEDOT:PSS as hole transport layer material in polymer solar cells. In the last part of this thesis, we use water-soluble crown-ether-substituted polyfluorene, poly[9,9’-bis(6’-(((1,4,7,10,13,16)hexaoxacyclooctadecanyl) methoxy)hexyl)fluorene] (PF-18-crown-6) as the electron transport layer for the first time to reduce series resistance in the polymer solar cells. The device efficiency can be promoted from 2.45 % to 2.82 % after insertion of this layer, which indicates PF-18-crown-6 can reduce series resistance of polymer solar cells and enhance the device efficiency.
Liao, Ying Han y 廖盈涵. "Tuning TiO2 Electron Transport Layer to Enhance Perovskite Solar Cell Performance". Thesis, 2018. http://ndltd.ncl.edu.tw/handle/mchd6u.
Texto completoHSU, YUAN-HAO y 許元豪. "Preparation of Perovskite Active Layer and TiO2 Electron Transport Layer Applied for Perovskite Solar Cell". Thesis, 2018. http://ndltd.ncl.edu.tw/handle/r874qr.
Texto completo國立雲林科技大學
電子工程系
106
In order to prepare a high quality perovskite active layer while avoiding complex and time-consuming processes, the perovskite active layer is prepared by using one-step spin-coating method. In order to control the completion and amount of the perovskite grains, the toluene dumping time in the one-step spin-coating method is used to prepare the perovskite active layer of perovskite solar cell (PSC). The electron transport layer (ETL) is prepared by using spin-coating method, where the electron transport layer includes both compact layer (CL) and mesoporous layer (ML). The compact layers with different thicknesses are prepared by using different rotational speeds, and the mesoporous layers are prepared by using different TiO2 materials: TiO2 powder P90 (P90) or TiO2 paste T (T). The PSCs are prepared by using these perovskite active layers and electron transport layers, while the performances of PSCs are investigated. In the first part of this study, one-step spin-coating method is used to prepare perovskite active layers by using different toluene dumping time. The result implies that the highest photoelectric conversion efficiency (PCE) of the PSC is 5.29%, in which the perovskite active layer of PSC is prepared with toluene dumping at the fifth second. In the second part of this study, the TiO2 compact layer is prepared with different rotational speeds, and the TiO2 mesoporous layer is prepared by using different TiO2 materials: TiO2 powder P90 (P90) and TiO2 paste T (T). The result implies the thickness of compact layer with a rotational speed of 5000 rpm in 30 seconds is 35 nm, on which a mesoporous layer of TiO2 (T) is stacked as electron transport layer in PSC and the PSC has the best performances, where the open-circuit voltage (Voc) is 0.95 V, the short-circuit current density (Jsc) is 18.45 mA/cm2, the fill factor (F.F.) is 0.42, and the photoelectric conversion efficiency (PCE) is 7.45%.
Wang, Hung-Yi y 王宏毅. "Electron transport and field-effect properties of ferrocene on few-layer MoS2". Thesis, 2016. http://ndltd.ncl.edu.tw/handle/23314607645291693357.
Texto completo國立交通大學
電子物理系所
104
In this thesis, we will discuss the changes of electron transport and field-effect behavior when the organometallic compound-ferrocene is adsorbed on the surface of few-layer molybdenum disulfide. We used mechanical exfoliation to make few-layer molybdenum disulfide (MoS2) flakes on silicon substrate, capped with 300-nm thick silicon dioxide layer. The standard electron beam lithography and thermal evaporation were used to deposit source and drain electrodes on few-layer MoS2 flakes. The MoS2 devices were annealed in a high vacuum in order to fix structural defects of MoS2 and to lower the contact resistivity. Two-probe measurement is used to measure the source-drain current voltage (I-V) curve and gate voltage-drain current (〖V_g-I〗_(SD )) curve. An atomic force microscopy was used to measure the topography and the thickness of few-layer MoS2. After the electrical properties of bare MoS2 devices were characterized, the ferrocene molecules were deposited on surface of the MoS2 by using micro tube. The ferrocene deposited MoS2 devices were annealed in a high vacuum to remove the solvent (chloroform). We then compared the electrical properties with that of bare MoS2 devices. The few-layer MoS2 devices are n-type semiconductors at room temperature. When the ferrocene molecules are deposited, the electric dipole of ferrocene gives internal electric fields that decrease electric fields in MoS2 supplied by the back-gate voltage. It results in the increasing of off-state current as more and more ferrocene molecules are adsorbed on the MoS2 surface. On the other hand, the temperature dependent resistance of ferrocene on MoS2 is well described by the theory of two-dimensional (2D) variable range hopping (VRH) transport in the temperature range from 200 to 100 K. The mobility reduces and the characteristic temperature extracted from fitting to the 2D VRH theory increases after ferrocene deposition. These results indicate that the existence of ferrocene introduces a disorder of stray electric fields in few-layer MoS2.
KimLien, Duong Thi y 楊氏金蓮. "Perovskite Solar Cell Having AlxZn(1-x)O Nanorod Electron Transport Layer". Thesis, 2016. http://ndltd.ncl.edu.tw/handle/90636757820691475714.
Texto completo國立成功大學
材料科學及工程學系
104
In the present work, we have investigated the use of ZnO nanorods (NRs) and Al modified ZnO (AZO) NRs in perovskite solar cell. ZnO NRs were synthesized using chemical bath deposition. The effect of deposition condition on the NR characteristics was studied. Desired NR layers were used for the deposition of perovskite, CH3NH3PbI3, using either a two-step sequential deposition or a one-step deposition technique. The deposition of the perovskite on the NR layer was optimized by examining the morphology, thickness, crystalline structure, optical absorption, and photoluminescence property. Solar cells were fabricated using selected NR and perovskite layers, having either glass or plastic substrates. The resulting cells were evaluated using a sun light simulator and current-voltage measurement. The effects of the characteristics of the NR layers on the cell performance are addressed.
Kim, Seyoung 1981. "Electron transport in graphene transistors and heterostructures : towards graphene-based nanoelectronics". Thesis, 2012. http://hdl.handle.net/2152/ETD-UT-2012-05-5420.
Texto completotext
Chang, Yan-Ru y 張雁茹. "Bathocuproine Doped in PCBM as an Electron Transport Layer for Perovskite Photovoltaic Application". Thesis, 2017. http://ndltd.ncl.edu.tw/handle/c789dr.
Texto completo國立交通大學
材料科學與工程學系所
106
In this study, we doped different amounts of 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline (bathocuproine, BCP) in [6,6]phenyl-C61-butyric acid methyl ester (PC61BM) and successfully improved the power conversion efficiency (PCE) of perovskite photovoltaic device. With the incorporation of BCP, we found that it can not only ameliorate the film formation property of PCBM and the interfacial contact but facilitate the charge transport and separation at the interface through effectively passivating the surface trap states of perovskite as well. These physical, optical, morphological, and electronic improvements result in higher open-circuit voltage (Voc), short-circuit current density (Jsc), and fill factor (FF). Therefore, the PCE is improved from 9.4% to 14.3%. The planar-heterojunction structure of the photovoltaic devices having the confugutation ITO/PEDOT:PSS/CH3NH3PbI3-xClx/PC61BM:BCP/Ag. In order to systematically investigate the effect of BCP doping, we use a combination of characterizations, including grazing-incidence small-angle X-ray scattering (GISAXS), atomic force microscopy (AFM), scanning electron microscopy (SEM), photoluminescence (PL) and ultraviolet–visible spectroscopy (UV-vis). We can understand that, as a result, this approach of incorporating small molecule into a fullerene allowed us to effectively tune the morphology of the ETL on the perovskite active layer and resulted in enhanced device efficiency.
ThanhSon, Bach y 白青山. "Integration of Reduced Graphene Oxide in Electron Transport Layer of Perovskite Solar Cells". Thesis, 2019. http://ndltd.ncl.edu.tw/handle/jj2epj.
Texto completo國立成功大學
材料科學及工程學系
107
The electron transport layer (ETL) plays a crucial role in facilitating electron extraction and inhibiting recombination in perovskite solar cells. Reduced graphene oxide (RGO) is a potential complement to the common ETL material TiO2 thanks to its excellent electrical conductivity and mobility and the suitability for scalable, low-temperature solution-processed deposition. RGO powder is synthesized through microwave-assisted hydrothermal method, and various amounts of o-phenylenediamine (OPD) are added into the precursor to create Nitrogen-doped RGO of different doping levels. The as-synthesized RGO samples characteristics are examined by XRD, XPS and Raman spectroscopy. The perovskite layer of CH3NH3PbI3 is deposited on RGO and TiO2 using a two-step spin coating process, and the as-deposited perovskite characteristics are examined through photoluminescence and UV-Vis spectroscopy. Finally, photovoltaic performance measurements of completed RGO-integrated devices is conducted under illumination of 1 Sun AM 1.5G sunlight simulator.
Huang, Hao-Jung y 黃浩榕. "A Study of High Efficient Organic Electroluminescent Devices with Multi-Layer Electron Transport Structure". Thesis, 2000. http://ndltd.ncl.edu.tw/handle/43437894603157769335.
Texto completo國立成功大學
電機工程學系
88
In this thesis, doped electron transport layer (ETL) and doped hole transport layer (HTL) organic electroluminescent (OEL) devices are successfully prepared by a vacuum evaporation system. The optimum rubrene doping concentration in Tris-(8-hydroxyquinolinato) aluminum(Ⅲ) (Alq3) and N,N’-diphenyl-N,N’-bis(3-methyphenyl)-1,1’-biphenyl-4,4’-diamine (TPD), which is 2.5 and 4 wt%, respectively. We have demonstrated that using Li/Al cathode and a Phthalocyanine Copper (CuPc) buffer layer for the device, ITO/CuPc/ TPD/Alq3/CuPc/Li/Al, can efficiently lower the operation voltages and enhance the performance of OEL devices. Furthermore, using CuPc to replace part of Alq3 for electron transport layer can lower operating voltages and get better luminous efficiencies. The role of CuPc in such OEL devices will be discussed. The vacuum evaporation system is adopted to deposit organic films of Alq3, TPD, and CuPc on the ITO coated glass substrate. The highly fluorescent molecule, rubrene, is doped in either Alq3 or TPD. Current-voltage curves are used for electrical analysis. Luminance, photoluminescence (PL), electroluminescence (EL) , ultraviolet-visible spectroscopy (UV-Vis), and commission innternationale de I’Eclairage (CIE) are used for the study of optical characteristics. By using a Li/Al cathode and replacing part of Alq3 with CuPc as an electron transport layer, we can lower the operating voltage and enhance the performance of OEL devices. The luminance, 1000 cd/m2, can be obtained at 5.5 V driving voltage. The maximum luminance is as high as 14000 cd/m2 in the investigation. Finally, We have demonstrated that CuPc is not a good material for an electron transport layer itself, but CuPc with a Li contact can get better electron transport property than Alq3.
Wang, Tsung-Chang y 王宗昶. "Investigation of electron transport layer and fluoride for the properties of organic solar cells". Thesis, 2009. http://ndltd.ncl.edu.tw/handle/fu8884.
Texto completo國立高雄大學
應用物理學系碩士班
97
The organic solar cells (OSC) have several superior advantages to inorganic solar cells, including lower cost, larger fabrication area, lighter weight and flexible property. Unfortunately, the power conversion efficiency (PCE) of the OSC is quite poor at the present time. Thus, improvement of PCE is an important issue. And then there are improvement methods of OSC from introduction of device concept such as change in active material, light harvesting structure, annealing and the electron transport layer (ETL). In this study, the structure of small-molecule OSC with is ITO-coated glass substrate /Copper phthalocyanine (CuPc) / fullerene (C60)/electron transport layer (ETL)/Al. The active layer is composed of CuPc and C60. 2-(4-Biphenylyl)-5-(4-tert-butylphenyl)-1, 3, 4-oxadiazole (PBD), Aluminum tris(8-hydroxyquinoline) (Alq3) and bathocuproine (BCP) are used as an electron transport layer. The materials of LiF and KF are used as a modification layer. In this study, the thicknesses of each material have been optimized for a better PCE. Besides, the short current density (Jsc) of devices with BCP layer was greatly improved compared with that of other ETL materials. The superior properties of BCP, such as lower electron injection barrier, higher UV/vis absorption efficiency and lower surface roughness, have been demonstrated by the energy level diagram, UV/vis absorption spectra and atom force microscope (AFM) data. In order to further improve the PCE of devices, we add ultra-thin fluoride as a modification layer to the devices with BCP layer. The PCE of OSC is improved from 0.54 % to 0.64 %.
Shin-YuLin y 林信宇. "Deposition of Gallium Nitride films as electron transport and hole blocking layer in OLED". Thesis, 2014. http://ndltd.ncl.edu.tw/handle/76k2ax.
Texto completo國立成功大學
化學工程學系
102
This article is about the research of Gallium Nitride(GaN) as electron injection and hole blocking layer in Organic Light Emitting Diode(OLED). The traditional material for electron injection and hole blocking layer is BCP, which Tg point is low. We want to use GaN to replace Bathocuproine(BCP) to enhance the stability of OLED device. Using RF sputtering method to grow GaN film under different condition, thermal evaporation system to deposit organic layer. In the begin the device performance was bad ,with turn on voltage up to 15V and only 119cd/m2. After figuring out the problem, change the working pressure from 10mTorr to 5mTorr, and treat the surface with N2 plasma. The device performance now enhances from 119cd/m2 to 1091cd/m2.
Yi-ChingChen y 陳怡靜. "Performance Investigation of Perovskite Solar Cells with Multi-Layer Electron and Hole Transport Structures". Thesis, 2017. http://ndltd.ncl.edu.tw/handle/kjq5rb.
Texto completoTsai, Yung-Han y 蔡詠涵. "Two-dimensional atomically thin perovskite oxide as electron transport layer for perovskite solar cells". Thesis, 2018. http://ndltd.ncl.edu.tw/handle/as64kv.
Texto completo國立臺灣大學
材料科學與工程學研究所
106
Two-dimensional (2D) oxides are a large group of 2D materials. These 2D oxides can be divided into two subgroups: 2D metal oxides and 2D perovskite oxides. They are rich in structural diversity, electronic properties, and have novel physical and chemical properties from quantum confinement or surface effects comparing to their bulk states. 2D oxides are widely applied in the nanocapacitors, secondary batteries, and photocatalysts fields. Among the 2D perovskite oxides, Ca2Nb3O10 (CNO) atomic sheet is an n-type wide bandgap semiconductor. It has well aligned conduction band minimum with that of the lead halide perovskite, which is an efficient light absorber for solar cell application. These properties make CNO a promising electron transport material to extract electrons and block holes from lead halide perovskite light absorber. On the other hand, comparing to the conventional high temperature (> 500 ˚C) sintered compact-TiO2 electron transport layer, CNO can be deposited with relative low temperature (< 150 ˚C) solution process. In this work, we deposited CNO with low temperature Langmuir-Blodgett deposition method as electron transport layer to fabricate perovskite solar cell. The resultant devices showed best efficiency of 14.10%, which is compatible to the conventional high-temperature sintered compact-TiO2 device (14.07%). Moreover, the CNO based devices showed better electron transport ability than the conventional ones. Our work showed that CNO atomic sheet is a highly promising electron transport material for low-temperature solution processed all perovskite structure solar cells.
Agrawal, Neetu. "Electron optics with dirac fermions: electron transport in Mano-and bi- layer graphene through various scalar and vector potential barriers". Thesis, 2013. http://localhost:8080/iit/handle/2074/6561.
Texto completoZeng, Yu (Anne). "A study of electron transport in the inversion layer advanced silicon carbide (SiC) power MOSFETs /". Diss., 2004. http://gateway.proquest.com/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqdiss&rft_dat=xri:pqdiss:3147336.
Texto completoLin, Shu-Wei y 林書緯. "Application and Characterization of Organic-Inorganic Hybrid Electron Transport Layer Used for Organic Photovoltaic Device". Thesis, 2014. http://ndltd.ncl.edu.tw/handle/00125799217068940233.
Texto completo國立交通大學
工學院加速器光源科技與應用碩士學位學程
102
In this research we present an “Organic-Inorganic Hybrid Electron Transport Layer” to control microstructure and tune energy level of zinc oxide. In the experimental part, we blend polyethylenimine with sol-gel processed zinc oxide and control the concentration of polyethylenimine to modify property of zinc oxide. The small angle X-ray scattering (SAXS) measurements demonstrate decrease of zinc oxide nanoclusters size for better quality of thin film. The ultraviolet photoelectron spectroscopy (UPS) measurements show shift of energy level for better electron-transporting. Using this approach, P3HT:PC61BM solar cell parameters including short circuit current density and fill factor are improved leading to the PCE increase up to 4.6%.
Wei, Chen-Yo y 魏晨祐. "Studies on High Performance Low Bandgap Polymer Solar Cell Through Modifications of Electron Transport Layer". Thesis, 2017. http://ndltd.ncl.edu.tw/handle/y7z25j.
Texto completoKe, We-Chen y 柯威辰. "Interface Modification on Electron Transport Layer to Improve Power Conversion Efficiency of Perovskite Solar Cells". Thesis, 2019. http://ndltd.ncl.edu.tw/handle/m7yjdh.
Texto completo國立臺灣大學
材料科學與工程學研究所
107
Perovskite solar cells (PSCs) have drawn enormous attention in recent years owing to their high power conversion efficiency over 20%. Some of its exceptional properties such as remarkably high absorption over the visible spectrum, long charge carrier diffusion lengths in the μm range, and tunable band gap by interchanging various structure ions reveal its great potential in solar conversion. Nevertheless, in order to promote carrier transmission efficiency of devices, how to elevate the ability to quench carriers aiding with other material layers’ aiding is an important issue nowadays. In the beginning, perovskite added Louis base is proofed to facilitate power conversion efficiency of perovskite solar cells; therefore, urea is adopted and successfully promotes efficiencies of devices. However, it is confirmed by papers that zinc oxide (ZnO) and tin oxide (SnO2) possess higher electron mobility and more suitable band structure, which are considered to be the replacements of TiO2 ETL. After analyzing surface morphology, X-ray diffraction, and carrier quenching efficiency, it is understood that ZnO coated perovskite is quite unstable and quickly degrades in atmosphere. Besides, tin oxide demonstrates the best transmission rate in three of them, so this metal oxide electron transport material is chose to do the next step of surface modification. The second is introducing the surface modification material to effectively separate excitons into carriers and for them to be quenched by ETL. Here, C60 pyrrolidine tris-acid (CPTA) and [6,6]-phenyl- C61-butyric acid methyl ester (PCBM) are separately passivated on SnO2 for comparison. In the past, PCBM was usually adopted in inverted perovskite solar cell as an organic electron transport layer, and it has been found that it could be used in surface as well modification in recent years. However, surface morphology, X-ray diffraction and photoluminescence (PL) show that CPTA transfers carrier more efficiently. In FTIR data analysis, the further study comprehends that the hydroxyl terminal groups on CPTA are coordinated with oxygen-vacancy-related defects of Sn in SnO2, and chemical bonding with interface modification brings better transfer ability than PCBM with non-bonding passivation on SnO2, forasmuch it is more advisable to be applied in facilitating performance of perovskite solar cells.
SINGHAL, NISHANT. "NUMERICAL SIMULATION OF PCBM AND MoO3 STACED ELECTRON AND HOLE TRANSPORT LAYER BASED PEROVSKITE SOLAR CELL". Thesis, 2018. http://dspace.dtu.ac.in:8080/jspui/handle/repository/16227.
Texto completo