Artículos de revistas sobre el tema "Electron-component"

Siga este enlace para ver otros tipos de publicaciones sobre el tema: Electron-component.

Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros

Elija tipo de fuente:

Consulte los 50 mejores artículos de revistas para su investigación sobre el tema "Electron-component".

Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.

También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.

Explore artículos de revistas sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.

1

Dubas, L. G. "Single-component relativistic electron flux". Technical Physics Letters 32, n.º 6 (junio de 2006): 527–28. http://dx.doi.org/10.1134/s106378500606023x.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Syrovoi, V. A. "Theory of single-component electron beams". Radiophysics and Quantum Electronics 33, n.º 6 (junio de 1990): 546–53. http://dx.doi.org/10.1007/bf01037861.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Grimme, Stefan, Lars Goerigk y Reinhold F. Fink. "Spin-component-scaled electron correlation methods". Wiley Interdisciplinary Reviews: Computational Molecular Science 2, n.º 6 (22 de junio de 2012): 886–906. http://dx.doi.org/10.1002/wcms.1110.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Bharuthram, R., S. S. Misthry y M. Y. Yu. "Electron acoustic surface waves in a two‐electron component plasma". Physics of Fluids B: Plasma Physics 5, n.º 12 (diciembre de 1993): 4502–4. http://dx.doi.org/10.1063/1.860567.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

McKENZIE, J. F. "Electron acoustic–Langmuir solitons in a two-component electron plasma". Journal of Plasma Physics 69, n.º 3 (abril de 2003): 199–210. http://dx.doi.org/10.1017/s002237780300206x.

Texto completo
Resumen
We investigate the conditions under which ‘high-frequency’ electron acoustic–Langmuir solitons can be constructed in a plasma consisting of protons and two electron populations: one ‘cold’ and the other ‘hot’. Conservation of total momentum can be cast as a structure equation either for the ‘cold’ or ‘hot’ electron flow speed in a stationary wave using the Bernoulli energy equations for each species. The linearized version of the governing equations gives the dispersion equation for the stationary waves of the system, from which follows the necessary – but not sufficient – conditions for the existence of soliton structures; namely that the wave speed must be less than the acoustic speed of the ‘hot’ electron component and greater than the low-frequency compound acoustic speed of the two electron populations. In this wave speed regime linear waves are ‘evanescent’, giving rise to the exponential growth or decay, which readily can give rise to non-linear effects that may balance dispersion and allow soliton formation. In general the ‘hot’ component must be more abundant than the ‘cold’ one and the wave is characterized by a compression of the ‘cold’ component and an expansion in the ‘hot’ component necessitating a potential dip. Both components are driven towards their sonic points; the ‘cold’ from above and the ‘hot’ from below. It is this transonic feature which limits the amplitude of the soliton. If the ‘hot’ component is not sufficiently abundant the window for soliton formation shrinks to a narrow speed regime which is quasi-transonic relative to the ‘hot’ electron acoustic speed, and it is shown that smooth solitons cannot be constructed. In the special case of a very cold electron population (i.e. ‘highly supersonic’) and the other population being very hot (i.e. ‘highly subsonic’) with adiabatic index 2, the structure equation simplifies and can be integrated in terms of elementary transcendental functions that provide the fully non-linear counterpart to the weakly non-linear sech$^{2}$-type solitons. In this case the limiting soliton is comprised of an infinite compression in the cold component, a weak rarefaction in the ‘hot’ electrons and a modest potential dip.
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Mace, R. L., S. Baboolal, R. Bharuthram y M. A. Hellberg. "Arbitrary-amplitude electron-acoustic solitons in a two-electron-component plasma". Journal of Plasma Physics 45, n.º 3 (junio de 1991): 323–38. http://dx.doi.org/10.1017/s0022377800015749.

Texto completo
Resumen
Motivated by plasma and wave measurements in the cusp auroral region, we have investigated electron-acoustic solitons in a plasma consisting of fluid ions, a cool fluid electron and a hot Boltzmann electron component. A recently described method of integrating the full nonlinear fluid equations as an initial-value problem is used to construct electron-acoustic solitons of arbitrary amplitude. Using the reductive perturbation technique, a Korteweg-de Vries equation, which includes the effects of finite cool-electron and ion temperatures, is derived, and results are compared with the full theory. Both theories admit rarefactive soliton solutions only. The solitons are found to propagate at speeds greater than the electron sound speed (ε0c/ε0ε)½υε, and their profiles are independent of ion parameters. It is found that the KdV theory is not a good approximation for intermediate-strength solitons. Nor does it exhibit the fact that the cool- to hot-electron temperature ratio restricts the parameter range over which electron-acoustic solitons may exist, as found in the arbitrary-amplitude calculations.
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Khrapak, S. A. y G. Morfill. "Waves in two component electron-dust plasma". Physics of Plasmas 8, n.º 6 (junio de 2001): 2629–34. http://dx.doi.org/10.1063/1.1370061.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Jiang, N. y J. Silcox. "Electron Irradiation Damage in Multi-Component Glasses". Microscopy and Microanalysis 6, S2 (agosto de 2000): 390–91. http://dx.doi.org/10.1017/s1431927600034449.

Texto completo
Resumen
Understanding electron beam induced damage in glasses, especially in multi-component glasses, is very important, since the interaction of electron probes with glass is a very common approach to determine glass composition and structure. For example, the decay of characteristic X-ray and Auger electron intensities, using electron beams as probes, of alkalis in glasses have been known for years. In addition, both phase separation and formation of gas bubbles in the glasses have also been reported. Many irradiation effects are strongly dependent on the structure, bonding and composition of matter. In general, three types of mechanisms, knock-on damage, ionization and field-induced migration have been introduced to describe the damage induced by electron irradiation. Here, we demonstrate electron irradiation induced phase decomposition in a multi-component oxide glass, and introduce a modified model to interpret the damage process.
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Danehkar, Ashkbiz, Nareshpal Singh Saini, Manfred A. Hellberg y Ioannis Kourakis. "Electron-acoustic solitary waves in the presence of a suprathermal electron component". Physics of Plasmas 18, n.º 7 (julio de 2011): 072902. http://dx.doi.org/10.1063/1.3606365.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Mbuli, L. N., S. K. Maharaj, R. Bharuthram, S. V. Singh y G. S. Lakhina. "Arbitrary amplitude fast electron-acoustic solitons in three-electron component space plasmas". Physics of Plasmas 23, n.º 6 (junio de 2016): 062302. http://dx.doi.org/10.1063/1.4952637.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
11

Malac, M., D. Homeniuk, M. Kamal, J. Kim, M. Salomons, M. Hayashida, J. A. Marin-Calzada, D. Vick, D. Price y R. F. Egerton. "NanoMi: An Open Source Electron Microscope Component Integration". Microscopy and Microanalysis 28, S1 (22 de julio de 2022): 3164–65. http://dx.doi.org/10.1017/s1431927622011746.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
12

Chvetsov, Alexei V. y George A. Sandison. "Reconstruction of electron spectra using singular component decomposition". Medical Physics 29, n.º 4 (21 de marzo de 2002): 578–91. http://dx.doi.org/10.1118/1.1461840.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
13

Shakhmin, A. L. y S. V. Murashov. "Electron structure of three-component lead-silicate glasses". Technical Physics Letters 26, n.º 3 (marzo de 2000): 208–10. http://dx.doi.org/10.1134/1.1262793.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
14

Eggeman, Alex, Duncan Johnstone, Robert Krakow, Jing Hu, Sergio Lozano-Perez, Chris Grosvenor y Paul Midgley. "Decomposing electron diffraction signals from multi-component microstructures". Acta Crystallographica Section A Foundations and Advances 71, a1 (23 de agosto de 2015): s52. http://dx.doi.org/10.1107/s2053273315099209.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
15

Eggeman, Alexander S., Duncan Johnstone, Robert Krakow, Jing Hu, Sergio Lozano-Perez, Chris Grovenor y Paul A. Midgley. "Decomposing Electron Diffraction Signals in Multi-Component Microstructures". Microscopy and Microanalysis 21, S3 (agosto de 2015): 1241–42. http://dx.doi.org/10.1017/s1431927615006996.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
16

Manos, D. M., J. L. Cecchi, C. W. Cheah y H. F. Dylla. "Diagnostics of low temperature plasmas: The electron component". Thin Solid Films 195, n.º 1-2 (enero de 1991): 319–36. http://dx.doi.org/10.1016/0040-6090(91)90283-4.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
17

Jung, Young-Dae. "Elastic Electron–Ion Collisions in Two-Component Plasmas". Physica Scripta 64, n.º 6 (1 de enero de 2001): 596–98. http://dx.doi.org/10.1238/physica.regular.064a00596.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
18

Seino, Junji y Masahiko Hada. "Examination of accuracy of electron–electron Coulomb interactions in two-component relativistic methods". Chemical Physics Letters 461, n.º 4-6 (agosto de 2008): 327–31. http://dx.doi.org/10.1016/j.cplett.2008.07.009.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
19

McQuillan, P. y K. G. McClements. "The unstable modes of a two-component electron plasma". Journal of Plasma Physics 40, n.º 3 (diciembre de 1988): 493–503. http://dx.doi.org/10.1017/s0022377800013465.

Texto completo
Resumen
In this paper we investigate the linear generation of electrostatic waves in a homogeneous, collisionless, unmagnetized plasma with two Maxwellian electron components, one drifting with respect to the other. The ions are assumed to be infinitely massive. It is shown that such a system may be unstable to a beam mode rather than the well-known Langmuir mode, if the drifting electron component is sufficiently dense and has a sufficiently low temperature. This ‘electron-beam instability’ is driven by the free energy in the particle distribution, and the associated phase velocity is greater than the electron thermal speed. The dispersion characteristics of the electron-beam instability and the Langmuir instability at the critical drift velocity for wave growth are determined for a wide range of parameters. The results of our investigation are applied to electron beams producing hard X-ray emission in solar flares, and it is argued that such beams may be unstable to the generation of electrostatic waves at frequencies below the electron plasma frequency.
Los estilos APA, Harvard, Vancouver, ISO, etc.
20

Gumbs, Godfrey. "Correlation energy of a one-component layered electron gas". Physical Review B 40, n.º 8 (15 de septiembre de 1989): 5788–91. http://dx.doi.org/10.1103/physrevb.40.5788.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
21

Kissick, M. W., J. D. Callen, E. D. Fredrickson, A. C. Janos y G. Taylor. "Non-local component of electron heat transport in TFTR". Nuclear Fusion 36, n.º 12 (diciembre de 1996): 1691–701. http://dx.doi.org/10.1088/0029-5515/36/12/i09.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
22

Kissick, M. W., J. D. Callen, E. D. Fredrickson, A. C. Janos y G. Taylor. "Non-local component of electron heat transport in TFTR". Nuclear Fusion 37, n.º 4 (abril de 1997): 568. http://dx.doi.org/10.1088/0029-5515/37/4/515.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
23

Turner, N. H., J. H. Wandass y F. L. Hutson. "Principal component analysis with integral Auger electron spectroscopy spectra". Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 8, n.º 6 (noviembre de 1990): 4033–38. http://dx.doi.org/10.1116/1.576472.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
24

Donkó, Z., B. Nyíri, L. Szalai y S. Holló. "Thermal Conductivity of the Classical Electron One-Component Plasma". Physical Review Letters 81, n.º 8 (24 de agosto de 1998): 1622–25. http://dx.doi.org/10.1103/physrevlett.81.1622.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
25

Kühn, Michael y Florian Weigend. "One-Electron Energies from the Two-Component GW Method". Journal of Chemical Theory and Computation 11, n.º 3 (23 de febrero de 2015): 969–79. http://dx.doi.org/10.1021/ct501069b.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
26

Tian, Shi-Ling, Rong-An Tang y Ju-Kui Xue. "Waves in a bounded two component electron-dust plasma". Physics of Plasmas 15, n.º 4 (2008): 043703. http://dx.doi.org/10.1063/1.2906219.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
27

Zhou, A. Z., J. Y. Tan, A. Esamdin y X. J. Wu. "Two-component scattering model and the electron density spectrum". Astrophysics and Space Science 325, n.º 2 (5 de noviembre de 2009): 241–49. http://dx.doi.org/10.1007/s10509-009-0182-8.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
28

Loskutov, S. V. "On the structural component of the electron work function". Russian Physics Journal 49, n.º 8 (agosto de 2006): 882–84. http://dx.doi.org/10.1007/s11182-006-0191-9.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
29

Winkler, R., F. Sigeneger y D. Uhrlandt. "Nonlocal behaviour of the electron component in nonequilibrium plasmas". Pure and Applied Chemistry 68, n.º 5 (1 de enero de 1996): 1065–70. http://dx.doi.org/10.1351/pac199668051065.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
30

Singh, Jogender y Douglas E. Wolfe. "Nanostructured Component Fabrication by Electron Beam-Physical Vapor Deposition". Journal of Materials Engineering and Performance 14, n.º 4 (1 de agosto de 2005): 448–59. http://dx.doi.org/10.1361/105994905x56223.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
31

Rompuy, T. Van, J. P. Gunn, R. Dejarnac, J. Stöckel y G. Van Oost. "Sensitivity of electron temperature measurements with the tunnel probe to a fast electron component". Plasma Physics and Controlled Fusion 49, n.º 5 (26 de marzo de 2007): 619–29. http://dx.doi.org/10.1088/0741-3335/49/5/004.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
32

Salter, E. A. y A. Wierzbicki. "The response electron–electron repulsion energy and energy component analysis in CC/MBPT methods". Structural Chemistry 27, n.º 5 (14 de junio de 2016): 1501–9. http://dx.doi.org/10.1007/s11224-016-0775-0.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
33

Autschbach, J. y W. H. E. Schwarz. "Relativistic electron densities in the four-component Dirac representation and in the two-component picture". Theoretical Chemistry Accounts: Theory, Computation, and Modeling (Theoretica Chimica Acta) 104, n.º 1 (12 de mayo de 2000): 82–88. http://dx.doi.org/10.1007/s002149900108.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
34

Morris, Wesley D. y James M. Mayer. "Separating Proton and Electron Transfer Effects in Three-Component Concerted Proton-Coupled Electron Transfer Reactions". Journal of the American Chemical Society 139, n.º 30 (21 de julio de 2017): 10312–19. http://dx.doi.org/10.1021/jacs.7b03562.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
35

El-Khatib, E. E., J. Scrimger y B. Murray. "Reduction of the Bremsstrahlung component of clinical electron beams: implications for electron arc therapy and total skin electron irradiation". Physics in Medicine and Biology 36, n.º 1 (1 de enero de 1991): 111–18. http://dx.doi.org/10.1088/0031-9155/36/1/010.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
36

Gary, S. Peter, Kaijun Liu, Richard E. Denton y Shuo Wu. "Whistler anisotropy instability with a cold electron component: Linear theory". Journal of Geophysical Research: Space Physics 117, A7 (julio de 2012): n/a. http://dx.doi.org/10.1029/2012ja017631.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
37

Shegelski, Mark R. A. y D. J. W. Geldart. "Plasmons in disordered, two-component, quasi-two-dimensional electron systems". Physical Review B 40, n.º 6 (15 de agosto de 1989): 3647–51. http://dx.doi.org/10.1103/physrevb.40.3647.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
38

Walter, Daniel G., Dean J. Campbell y Chad A. Mirkin. "Photon-Gated Electron Transfer in Two-Component Self-Assembled Monolayers". Journal of Physical Chemistry B 103, n.º 3 (enero de 1999): 402–5. http://dx.doi.org/10.1021/jp983460b.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
39

Micnas, R., S. Robaszkiewicz y A. Bussmann-Holder. "Superconductivity in a Two-Component Model with Local Electron Pairs". Journal of Superconductivity 17, n.º 1 (febrero de 2004): 27–32. http://dx.doi.org/10.1023/b:josc.0000011835.35408.f3.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
40

Terry, P. W. y R. Gatto. "Nonlinear inward particle flux component in trapped electron mode turbulence". Physics of Plasmas 13, n.º 6 (junio de 2006): 062309. http://dx.doi.org/10.1063/1.2212403.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
41

Barabanov, A. L. y O. A. Titov. "Possible Sources of Electron Neutrinos with a Modulated Monochromatic Component". Physics of Atomic Nuclei 80, n.º 6 (noviembre de 2017): 1181–88. http://dx.doi.org/10.1134/s1063778817060060.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
42

Liang, Alexandria Deliz y Stephen J. Lippard. "Component Interactions and Electron Transfer in Toluene/o-Xylene Monooxygenase". Biochemistry 53, n.º 47 (17 de noviembre de 2014): 7368–75. http://dx.doi.org/10.1021/bi500892n.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
43

Vignale, G. "Acoustic plasmons in a two-dimensional, two-component electron liquid". Physical Review B 38, n.º 1 (1 de julio de 1988): 811–14. http://dx.doi.org/10.1103/physrevb.38.811.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
44

Chattopadhyay, Indranil, Santabrata Das y Sandip K. Chakrabarti. "Radiatively driven electron-positron jets from two-component accretion flows". Monthly Notices of the Royal Astronomical Society 348, n.º 3 (marzo de 2004): 846–56. http://dx.doi.org/10.1111/j.1365-2966.2004.07398.x.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
45

Yamaguchi, Shigehiro y Atsushi Wakamiya. "Boron as a key component for new π-electron materials". Pure and Applied Chemistry 78, n.º 7 (1 de enero de 2006): 1413–24. http://dx.doi.org/10.1351/pac200678071413.

Texto completo
Resumen
For the molecular design of new π-electron materials, the incorporation of main group elements into the π-conjugated frameworks is a powerful approach to modifying the nature of the parent π-conjugated systems. In particular, the group 13 boron is of interest, since the boron element has several characteristic features, such as an effective orbital interaction with the π-conjugated frameworks through the vacant p-orbital (i.e., pπ-π* conjugation), high Lewis acidity, and trigonal planar geometry. By exploiting these features of the boron atom, we have designed and synthesized several types of new π-electron materials, including trianthrylborane- or dibenzoborole-based π-conjugated systems as a new fluoride ion sensor, boryl-substituted thienylthiazole as a new building unit for electron-transporting materials, and B,B',B''-trianthrylborazine (B3N3)-based materials as a model of the bundled system of π-conjugated frameworks.
Los estilos APA, Harvard, Vancouver, ISO, etc.
46

Rokhlenko, Alexander V. "Electron component of a plasma in a homogeneous electric field". Physical Review A 43, n.º 8 (1 de abril de 1991): 4438–51. http://dx.doi.org/10.1103/physreva.43.4438.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
47

Varma, C. M. y A. Zawadowski. "Scaling in an interacting two-component (valence-fluctuation) electron gas". Physical Review B 32, n.º 11 (1 de diciembre de 1985): 7399–407. http://dx.doi.org/10.1103/physrevb.32.7399.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
48

Alekseev P. S. "Viscous flow of two-component electron fluid in magnetic field". Semiconductors 56, n.º 9 (2022): 650. http://dx.doi.org/10.21883/sc.2022.09.54130.9931.

Texto completo
Resumen
In pure conductors with a low density of defects, frequent electron-electron collisions can lead to the formation of a viscous fluid consisting of conduction electrons. In this work, is studied magnetotransport in a viscous fluid consisting of two types of electrons, for which some of their parameters are different. The difference between such system and the one-component electron fluid is as follows. The scattering of electrons with their transitions from one component to another can lead to an imbalance in flows and concentrations, which affects the flow as a whole. In this work, the balance transport equations for such a system are constructed and solved for the case of a long sample with rough edges. The equation for the flow of the unbalance value towards the edges contains the bulk viscosity term. It is shown that in sufficiently wide samples, the transformation of particles into each other during scattering leads to the formation of a single viscous fluid flowing as a whole, while in narrow samples the two components flow as two independent fluids. The width of the sample at which this transition occurs is determined by the internal parameters of the fluid and the magnitude of magnetic field. The distributions of the flow of the fluid components over a sample cross section and the magnetoresistance of a sample are calculated. The latter turns out to be positive and saturating, corresponding to the transition with increasing of magnetic field from independent Poiseuille flows of the two components to the Poiseuille flow of a uniform fluid. Keywords: electron fluid, viscosity, two-component system, nanostructures, magnetoresistance.
Los estilos APA, Harvard, Vancouver, ISO, etc.
49

Tang, J. y J. R. Norris. "On superexchange electron-transfer coupling for a three-component system". Chemical Physics 175, n.º 2-3 (septiembre de 1993): 337–42. http://dx.doi.org/10.1016/0301-0104(93)85162-2.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
50

Denisov, K. S., K. A. Baryshnikov y P. S. Alekseev. "Memory Effects in the Magnetoresistance of Two-Component Electron Systems". JETP Letters 118, n.º 2 (julio de 2023): 123–29. http://dx.doi.org/10.1134/s0021364023601860.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
Ofrecemos descuentos en todos los planes premium para autores cuyas obras están incluidas en selecciones literarias temáticas. ¡Contáctenos para obtener un código promocional único!

Pasar a la bibliografía