Tesis sobre el tema "Électrolytes tout-solide"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte los 28 mejores tesis para su investigación sobre el tema "Électrolytes tout-solide".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Explore tesis sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.
Chable, Johann. "Électrolytes solides fluorés pour batteries tout solide à ions F-". Thesis, Bordeaux, 2015. http://www.theses.fr/2015BORD0276/document.
Texto completoThis work deals with the synthesis, shaping and characterization of RE1-xMxF3-x (RE = La, Sm, Ce et M = Ba, Ca, Sr) tysonite-type solid solutions. In a first part, onemeticulous approach has been set up for La1-xBaxF3-x solid solution, chosen as a reference.The solid-state synthesis of these materials led to a better knowledge of their chemicalcomposition (Vegard’s laws) and of the structure-ionic mobility correlations. The impact ofthe sintering process on the ionic conductivity is also highlighted. In a second part, the effectsof the nanostructuration conducted by ball-milling of the microcrystalline samples areevaluated. The use of the Design of Experiments methodology led to identify the optimummilling conditions. It appears that the synthesis of electrolytes can be sped- and scaled-up,while keeping high ionic conductivity properties. At last, this approach is applied on othertysonite-type solid solutions, to look for the best electrolyte. The Ce/Sr and Sm/Casubstitutions generate very promising ionic conductors but not really (electro)chemicallystable compounds. A compromise has been found with the choice of the La1-xSrxF3-x solidsolution as the FIB electrolyte for the electrochemical performances tests, regarding its higherchemical stability
Dongui, Bini Kouame. "Electrode métallique négative pour générateurs électrochimiques "tout solide" à conduction protonique". Grenoble INPG, 1988. http://www.theses.fr/1988INPG0111.
Texto completoMaouacine, Koceila. "Matériaux hybrides poreux silice/polymère comme électrolytes pour batterie lithium-ion tout solide". Electronic Thesis or Diss., Aix-Marseille, 2023. http://www.theses.fr/2023AIXM0024.
Texto completoThe design of lithium-ion batteries using a solid electrolyte is currently one of the most studied ways to overcome safety problem of these devices. In this thesis work, we propose a new approach to develop a porous silica/polymer hybrid electrolyte, containing a higher weight fraction of mesoporous silica than polymer. Two morphologies of silica hybrid materials were studied: as compressed powders (pellets) and as thin films. In the first part of the work, a hybrid silica powder was synthesized and then calcined to liberate the porosity. The mesoporous silica was then functionalized with different polymers of PEG of low molecular weight then by a simple solution impregnation. The hybrid powders were shaped as pellets, presenting inter- and intra-particle porosity. It was shown that the hybrid pellets present promising ionic conductivity properties when the inter- and intraparticle porosities are filled with the PEG-LiTFSI complex for PEG of low molar mass (300-600 g/mol). In the second part, mesoporous silica films were deposited on a glassy carbon electrode using a rotating disc electrode (RDE). After the characterization of these films from a textural properties and a microstructure point of view, they were functionalized by the PEG-LiTFSI complex via an impregnation process and the preliminary study of their ionic conductivity was performed
Garie, Régine. "Etude et réalisation d'une cellule d'affichage électronique "Tout solide"". Bordeaux 1, 1986. http://www.theses.fr/1986BOR10641.
Texto completoPoirier, Romain. "Synthèse en solution de sulfures divisés pour les électrolytes de batteries lithium-ion tout solide". Electronic Thesis or Diss., Lyon 1, 2024. http://www.theses.fr/2024LYO10212.
Texto completoSolid electrolytes are now considered to be the key to the development of new generations of batteries. Two types of solid electrolyte have mainly been studied, polymers and inorganics, but their performance remains limited. One promising way of obtaining high-performance electrolytes is to use inorganic particles incorporated into a polymer matrix to form a hybrid electrolyte. Among the possible inorganic materials, the sulfide family (Li3PS4, Li6PS5X with X= Cl, Br, I) has very high ionic conductivities. However, these materials are generally obtained by the solid route, leading to aggregated micrometric particles. Furthermore, although solution syntheses have recently been demonstrated, the potential to control their size, morphology and prevent aggregation has not been exploited. The aim of this thesis is to develop a methodology for the synthesis of sulfides that enables the size, morphology and aggregation of particles to be controlled so that they can be incorporated into a polymer phase. Several solution synthesis routes were developed in order to overcome the kinetic limitations of conventional synthesis. These different synthesis methods have produced a wide range of particles with different morphologies and aggregation rates. The impact of particle size and morphology on the electrochemical performance of the electrolytes was studied. The best performing electrolytes were tested in hybrid formulations as well as in complete all-solid state electrochemical cells with a Li/In anode
Navallon, Guillaume. "Caractérisation d'électrolytes composites pour batteries tout-solide par diffusion de neutrons et rayonnement synchrotron". Electronic Thesis or Diss., Université Grenoble Alpes, 2023. http://www.theses.fr/2023GRALY087.
Texto completoState-of-the-art lithium–ion technology is reaching its limits regarding applications as energy storage devices for electric mobility. In fact, both high energy density and safety standards requested by the market are hardly attainable with the actual materials and components. In theory, the current limitations could be overcome by the use of metallic lithium as the negative electrode, which would increase the energy density of the cell but would also require a mean to prevent lithium dendritic growth. In this context, polymer electrolytes are promising materials as their solid state could hinder the dendritic growth. Nevertheless, in practice, they still lack sufficient ionic conductivity. It has been reported that, in some conditions, the fabrication of composite material by adding fillers inside a polymer electrolyte can enhance the ionic conductivity. Some studies attributed this effect to beneficial interactions occurring at the interface between fillers and the polymer-lithium salt system. Other studies, on a larger scale, highlighted modifications of the polymer mobility in presence of filler. Together, these results suggest that fillers create faster conduction pathways surrounding them, which on a macroscopic scale could enhance the electrolyte conductivity.This thesis work aims at understanding the contribution of these effects on the transport properties, in order to clarify the role of fillers added inside a polymer electrolyte. The system under investigation is an electrolyte based on poly(trimethylene carbonate) (PTMC) and LiTFSI, inside which we mixed different proportion of alumina particles. We selected three kind of particles with different morphologies and crystalline phases. In order to study the impact of fillers at multiple scales, we combined characterizations in lab and at large-scale facilities. The ionic transport properties were studied by electrochemical techniques. The composite microstructure was probed by phase contrast X-ray imaging and small angle scattering - X-rays and neutrons. Several relevant microstructural parameters were identified, quantified, and then correlated with the properties of ion transport of the electrolyte. We showed that the density of hydroxyls on the surface of particles for a given volume of electrolyte could be increased two-fold depending on the filler type, and that this parameter is linked to the state of agglomeration of fillers and the homogeneity of their dispersion. This structural study is supplemented by a study on the dynamics of PTMC at the molecular scale by quasi-elastic neutron scattering (QENS). Our results show that the presence of lithium salt hinders the intrinsic mobility of PTMC, while in presence of alumina, the PTMC polymer backbone recovers a local mobility. At typical timescales of hundreds of picoseconds, relaxation times are divided by a factor two in presence of fillers.All the characterization conducted shed light on the impact of inert filler on the transport properties of polymer electrolyte. Inside a composite electrolyte, the presence of filler induce multiple effects that combine and the complex outcome depend on multiple factors. We showed that the extent of interactions at the interface between particles and polymer as well as variations in the local mobility of polymer correlate with changes in the ionic transport properties of the electrolyte. The understanding of these mechanisms establish an important step toward the optimization of composite formulation for the production of better performing composite electrolytes
Cozic, Solenn. "Étude des propriétés électriques et structurales de verres de sulfures au lithium pour électrolytes de batteries tout-solide". Thesis, Rennes 1, 2016. http://www.theses.fr/2016REN1S054/document.
Texto completoThe energy storage market is in constant growth for both portable and stationary applications. To satisfy the requirements of various applications (electronic devices, hybrid-electric vehicles, renewable energy storage…), always more efficient, more compact and lightweight batteries have to be developed. Then, thanks to their high energy densities, batteries using Li metal anodes are the most promising to complete this challenge. However, the use of conventional liquid electrolytes raises safety issues, mainly related to the flammability of the organic liquid. In this thesis, glassy materials, exhibiting great interest towards developing solid electrolytes are considered and might enable the development of safe and efficient all-solid-state batteries. Here, Li-sulfide glasses, attractive for their ionic conduction properties, have been studied and characterized. The ionic conduction properties of glasses are still misunderstood and controversial, the structural investigation of glasses is of great interest in order to get a better understanding of structure-properties relationship. Then, the short and intermediate range order of prepared glasses have been investigated by the mean of various complementary structural analysis techniques. Finally, glassy materials are usually quite easy to shape. Thus, studied glasses in this thesis can also be used as thin-film electrolytes in microbatteries. First tests of sputtering of conducting thin-films have been performed by RF magnetron sputtering and constitute a first step in order to design microbatteries
Morin, Pierrick. "Etude des propriétés d’électrolytes solides et d’interfaces dans les microbatteries tout solide : Cas du LiPON et des électrolytes soufrés". Thesis, Université Grenoble Alpes (ComUE), 2019. http://www.theses.fr/2019GREAI003/document.
Texto completoThe link between the structure and the electrochemicalproperties of thin-film electrolytes and the interface formed withthe cathode material LiCoO2 has been intensively studied bycoupling Electrochemical Impedance Spectroscopy (EIS) and X-rayPhotoelectron Spectroscopy (XPS). Nitrogen incorporation intoLiPON, reference solid-state electrolyte for microbatteries, ischaracterized by the formation of lithium and oxygen vacancies,increasing the lithium ions transport. A sulfide based thin filmelectrolyte called LiPOS has been developed by radiofrequencysputtering, with the incorporation of sulfur into the initial Li3PO4structure. The solid/solid interface between LiPON and LiCoO2 ischaracterized by a partial reduction of cobalt and oxidation ofLiPON, which is in all probability responsible of the increase of thecharge transfer resistance between the two materials
Tarhouchi, Ilyas. "Etude des phases Li10MP2S12 (M=Sn, Si) comme électrolyte pour batteries tout-solide massives". Thesis, Bordeaux, 2015. http://www.theses.fr/2015BORD0220/document.
Texto completoBy replacing the liquid electrolyte by a solid one, solid state batteries are oftenconsidered as a solution to safety issues in current Li-ion batteries. The recentdiscovery of Li10GeP2S12 with so-called LGPS structure, which exhibits an ionicconductivity equivalent to that of liquid electrolytes, has boosted related researchactivities.In this perspective, we studied the Li10MP2S12 (M=Sn, Si) materials with LGPSstructure, using various methods to characterize the structure (XRD, 31P NMR,Mössbauer spectroscopy …), the ionic mobility/conductivity (7Li NMR, Impedancespectroscopy), and the electrochemical properties (cycling voltammetry,galvanostatic cycling) of the material.Commercially available Li10SnP2S12 batches contain impurities and there remains anambiguity in the actual composition of the LGPS type phase. Modelling of the 31PNMR shifts reveals the effect of lithium in neighboring octahedral sites. Impedencemeasurements suggest reactivity with Li metal, and cyclic voltammetry confirms thatthe material is highly unstable at low potential, which excludes its use as a simpleelectrolyte in solid state batteries. We propose that it might be used both as anelectrolyte and as a negative electrode.The preliminary study on silicon based materials highlights difficulties in obtaining apure LGPS-type compound and questions the real nature of the so-calledthio-LiSICON structural model. Besides, it also shows the instability of thesematerials versus lithium metal
Larfaillou, Séverin. "Application de la spectroscopie d’impédance électrochimique à la caractérisation et au diagnostic de microbatteries tout solide". Thesis, Paris 11, 2015. http://www.theses.fr/2015PA112030/document.
Texto completoThe goal of this work is to develop characterization and non-destructive diagnosis of all-solid-state lithium microbatteries, essentially by means of electrochemical impedance spectroscopy. This work is based on commercial microbatteries EnFilmTM EFL700A39, built with the lithium metal architecture Li/LiPON/LiCoO2. Firstly, the elemental characterization of active layers allowed us to identify the main properties of the ionic motion in the solid electrolyte layer. Secondly, characterization of the positive electrode (LiCoO2) revealed the existence of more or less conductive areas inside the layer. Theses areas can cause ionics or electronics limitations during battery operation. The study of the entire microsystems by electrochemical impedance spectroscopy was then performed according to lithiation rate (SOC), number of cycles, and battery aging. The results obtained allowed the building of an electrical equivalent circuit for modeling the behaviour of the different active layers of a microbattery in use. This model also allows targeting the origins of any failures after manufacturing or upon microbattery aging. Additional works on lithium free systems (LiCoO2/LiPON/Cu) reveals a strong electrochemical interaction between in situ deposited lithium and copper current collector (partially oxidized) and highlight the critical importance of the very first cycles of the cell for subsequent performance
Castillo, Adriana. "Structure et mobilité ionique dans les matériaux d’électrolytes solides pour batteries tout-solide : cas du grenat Li7-3xAlxLa3Zr2O12 et des Nasicon Li1.15-2xMgxZr1.85Y0.15(PO4)3". Thesis, Université Paris-Saclay (ComUE), 2018. http://www.theses.fr/2018SACLX107/document.
Texto completoOne of the issues for the development of all-solid-state batteries is to increase the ionic conductivity of solid electrolytes. The thesis work focuses on two types of materials as crystalline inorganic solid electrolytes: a Garnet Li7-3xAlxLa3Zr2O12 (LLAZO) and a Nasicon Li1.15-2xMgxZr1.85Y0.15(PO4)3 (LMZYPO). The objective of this study is to understand to what extent the conduction properties of the studied materials are impacted by structural modifications generated either by a particular treatment process, or by a modification of the chemical composition. Structural data acquired by X-ray diffraction (XRD) and Magic Angle Spinning (MAS) Nuclear Magnetic Resonance (NMR) were then crossed with ions dynamics data deduced from NMR measurements at variable temperature and electrochemical impedance spectroscopy (EIS).The powders were synthesized after optimizing thermal treatments using solid-solid or sol-gel methods. Spark Plasma Sintering (SPS) technique was used for the densification of the pellets used for ionic conductivity measurements by EIS.In the case of garnets LLAZO, the originality of our work is to have shown that a SPS sintering treatment, beyond the expected pellets densification, also generates structural modifications having direct consequences on the lithium ions mobility in the material and therefore on the ionic conductivity. A clear increase of the lithium ions microscopic dynamics after SPS sintering was indeed observed by variable temperature 7Li NMR measurements and the monitoring of the relaxation times.The second part of the study provides an exploratory work on the substitution of Li+ by Mg2+ in LMZYPO. We studied the ionic conduction properties of these mixed Li/Mg compounds, in parallel with a fine examination of the crystalline phases formed. We have showed in particular that the presence of Mg2+ favors the formation of the less conductive β’ (P21/n) and β (Pbna) phases, which explains the decrease of the ionic conductivity with the substitution level of Li+ by Mg2+ observed in these Nasicon type materials.Our work therefore highlights the crucial importance of structural effects on the conduction properties of ceramic solid electrolyte materials
Saha, Sujoy. "Exploration of ionic conductors and Li-rich sulfides for all-solid-state batteries". Electronic Thesis or Diss., Sorbonne université, 2020. https://accesdistant.sorbonne-universite.fr/login?url=https://theses-intra.sorbonne-universite.fr/2020SORUS041.pdf.
Texto completoGrowing needs for energy storage applications require continuous improvement of the lithium ion batteries (LIB). The anionic redox chemistry has emerged recently as a new paradigm to design high-energy positive electrodes of LIBs, however with some issues (i.e., voltage hysteresis and fading, sluggish kinetics, etc.) that remained to be solved. In addition, the safety of the LIBs can be improved by designing all-solid-state batteries (ASSB). In this thesis, we first focused on the development of new oxide-based solid electrolytes (SE) for applications in ASSBs. We explored the influence of disorder on the ionic conductivity of SEs and demonstrated how to increase the conductivity by stabilizing disordered high-temperature phases. Furthermore, we designed Li-rich layered sulfide electrodes that undergo anionic sulfur redox, with excellent reversibility. Thus, the newly designed electrode materials show a possible direction to mitigate the issues related to anionic redox. Lastly, we used the Li-rich sulfides as positive electrode in ASSB with sulfide-based SEs that demonstrate excellent cyclability, thereby highlighting the importance of interfacial compatibility in ASSBs
Attia, Mahmoud. "Multiscale atomistic and quantum chemical simulations of dynamics and NMR properties in high-ionic conductivity solid-state Lithium-ion electrolytes for all-solid-state batteries". Electronic Thesis or Diss., université Paris-Saclay, 2025. http://www.theses.fr/2025UPASP012.
Texto completoFrance, along with Europe as a whole, is actively committed to the development of all-solid-state batteries (SSBs), a key technology for ensuring the ecological transition and the widespread adoption of electric vehicles (EVs). A major advancement in this field lies in the design and optimization of solid-state electrolytes (SSEs). Among the candidate materials, garnet-type LLZO (Li₇La₃Zr₂O₁₂) stands out as a promising solid electrolyte for lithium-metal batteries due to its high chemical stability and ionic conductivity. My thesis work focuses on the structural and dynamic properties of Lithium Lanthanum Zirconate (LLZO) solid-electrolyte, both in its pure and Aluminum-doped (Li₇₋₃ₓAlₓLa₃Zr₂O₁₂) forms, by combining multiscale state-of-the-art simulation methods with experimental validation. Within the framework of my thesis, lithium-ion dynamics were investigated using advanced theoretical methods, including Density Functional Theory (DFT) and Classical Molecular Dynamics (MD). These approaches cover a wide range of spatial and temporal scales: from atomic scales (on the order of ångström and femtoseconds) to nanometric and macroscopic scales (involving up to a million atoms). A custom in-house code, MD Scrutinizer, was developed to analyze lithium-ion diffusion and migration mechanisms as well as their confinement within the crystal structure. Atomistic simulations were complemented by a series of experimental techniques, including Nuclear Magnetic Resonance (NMR), Electrochemical Impedance Spectroscopy (EIS), and neutron diffraction. NMR played a central role in analyzing lithium dynamics and its local environment. NMR properties were modeled using the DFT-GIPAW (Gauge-Including Projector Augmented Wave) approach. An iterative approach combining MD, DFT, and GIPAW was proposed to enhance the predictive accuracy of NMR parameters and resolve discrepancies between theoretical predictions and NMR experimental results. The findings of my thesis highlight the impact of Aluminium doping on the structure of the cubic phase of LLZO (c-LLZO), as well as its effect on lithium-ion dynamics. The results demonstrate the interplay between structural stability, lithium diffusion pathways, and dopant-induced effects. My thesis devise the right methodology for optimizing LLZO and the prediction of NMR parameters in solid electrolytes, paving the way for a better interpretation of the NMR experiments, one of the most approach for studying Li dynamics, and contributing to advancements in all-solid-state battery technologies
Auvergniot, Jérémie. "Étude des mécanismes aux interfaces électrode/électrolyte d’accumulateurs « bulk tout-solide »". Thesis, Pau, 2017. http://www.theses.fr/2017PAUU3044/document.
Texto completoThe last two decades have shown a tremendous spreading of portable electronics, changing our society. This change was made possible by the invention of Li-ion batteries, which provide a high energy density for a low weight and volume. More recently the development of new applications, such as electric vehicles or renewable energies, has led to new needs in terms of electrochemical storage. For some applications, user safety will be as important as cost and energy density. On the other hand, research around Na-ion batteries focuses an increased interest, because they do not depend on lithium cost. Replacing organic liquid electrolytes with inorganic solid electrolytes is an interesting solution to improve the safety of batteries, because inorganic ionic conductors are nonflammable, stable at high temperature, and supposed to be chemically and electrochemically more stable. Using those materials in all-solid-state batteries has however several limiting factors, such as loss of contact between particle at the interfaces during cycling, and also chemical/electrochemical compatibility issues between materials. Another issue with this type of batteries is the interdiffusion of species at interfaces leading to an impedance increase during cycling. Several solutions exist to mitigate those issues, such coating the active material particles with a less reactive inorganic material. However there is a lack of knowledge on the species forming at those interfaces, knowledge which is needed to improve the performances of such systems. Studying those interfacial interactions and characterizing the species formed as those interfaces was the main topic of this Ph.D thesis.This work has been done in collaboration between two laboratories : IPREM (University of Pau - CNRS, France) and LRCS (University of Amiens - CNRS, France). Two solid electrolytes have been studied: the argyrodite Li6PS5Cl and the NaSICON Na3Zr2Si2PO12. Those materials have been synthetized, then integrated in bulk all-solid-state batteries and their interfaces were characterized by X-Ray Photoelectron Spectroscopy (XPS) and Auger Electron Spectroscopy (AES). Those two techniques provide us very complementary information, the first allowing identification and quantification of surface species, the second one giving access to the spatial repartition of elements at a nanometric level.The analysis of bulk all-solid-state batteries based on the electrolyte Na3Zr2Si2PO12 using the active material Na3V2(PO4)3 showed micromorphologic changes during cycling, as well as interdiffusion phenomena between particles. AES analysis also allowed us to describe self-discharge issues.The study of Li6PS5Cl-based batteries highlighted that this solid electrolyte is stable towards the negative electrode active material LTO. It however has interfacial reactivity towards positive electrode active materials such as LCO, NMC, LMO, LFP and LiV3O8. This reactivity leads to the formation of several species such as LiCl, P2Sx , Li2Sn , S0 and phosphates at the interface with Li6PS5Cl. In spite of the encountered interfacial reactivity issues, we managed to build all-solid-state batteries based on Li6PS5Cl showing a good capacity retention over 300 cycles when cycled between 2.8 and 3.4V
Kubanska, Agnieszka. "Toward the development of high energy lithium-ion solid state batteries". Thesis, Aix-Marseille, 2014. http://www.theses.fr/2014AIXM4775.
Texto completoAll-solid batteries with inorganic solid electrolytes are attractive candidates in electrochemical energy storage since they offer high safety, reliability and energy density. Aiming to increase the surface capacity strong efforts have been made to increase the thickness of the electrode. However, the thicker electrode, the more stress is generated at the solid/solid interfaces because of the volume change of the active material during lithium insertion/desinsertion upon cycling, which leads to formation of micro-cracks between the components and finally a bad cycling life. The possible answer to this issue is to build in place of a dense phase pure electrode, a composite electrode which is a multifunctional material. This composite electrode should contain a lot of electrochemically active material, the reservoir of energy; together with electronic and ionic conductor additives, to ensure efficient and homogeneous transfer of electrons and ions in the electrode volume.The main scope of this thesis was to develop all-solid-state batteries prepared by SPS method for applications at elevated temperatures. These batteries consist of a two composite electrodes separated by the NASICON-type solid electrolyte Li1.5Al0.5Ge1.5(PO4)3. The main objective was to find relationships, for given materials, between the initial powder granulometry (grain size, size distribution, agglomeration), the microstructure of ceramics obtained by SPS sintering, and the electrochemical performances of the final batteries. By creating electrodes with novel materials and better composition, the trade-off of power density and energy density can be minimized
Rondeau, Benjamin. "Ingénierie des interfaces dans une batterie tout solide". Electronic Thesis or Diss., université Paris-Saclay, 2024. http://www.theses.fr/2024UPASF071.
Texto completoA new generation of batteries, known as all-solid-state batteries, is emerging and represents a major challenge in the development of higher- performance, safer devices. Nevertheless, all-solid- state batteries face many challenges, such as finding a solid electrolyte with ideal properties (high ionic conductivity, free of critical materials, stable and inexpensive), but also the need to develop a shaping process that does not alter the materials. A new type of material called high-entropy oxide (HEOx), highlighted in 2015 with the compound (Mg,Co,Ni,Cu,Zn)O, has demonstrated very interesting ionic conductivities when doped with lithium. This material looks promising as a solid-state electrolyte, but it contains cobalt. The work in this manuscript has two main focuses. Firstly, the research and characterization of new high-entropy solid electrolytes without critical materials. Secondly, the optimization of various all- solid-state battery manufacturing processes. For example, we have successfully replaced the cobalt in HEOx batteries. It was possible to substitute it with two different chemical elements: manganese and iron. Next, we worked on two methods for manufacturing all-solid batteries: pastillage and double coating. These methods were used to integrate three different HEOx as solid electrolyte in a complete all-solid state battery, and to identify optimization parameters
Denoyelle, Quentin. "Microbatteries lithium(-ion) tout solide pour applications haute température". Thesis, Bordeaux, 2021. http://www.theses.fr/2021BORD0007.
Texto completoThe development of microelectronics has led to the manufacture of sensors able to operate at high temperatures (150 - 250 °C). For this kind of application, available power sources (conventional batteries, ZEBRA batteries etc.) are poorly or not adapted at all to this kind of applications. The use of LiPON, a ceramic electrolyte stable until high temperature, suggests that microbatteries could be used for high temperature current supplying. The aim of this work is to estimate the sustainability of standard microbatteries LiCoO2/LiPON/Li at high temperature. The first part of the study focuses on the thermal stability of the different materials of the stack, especially on delithiated compounds Li1-xCoO2. In parallel, the second part of the study is devoted to the interfaces between the different materials, focusing on the LiCoO2/LiPON interface. Given the results obtained on the thermal stability of the positive electrode material and its reactivity with the electrolyte, the third part deals with the electrode material substitution in order to make a more robust stack at high temperature. The study of Li2FeS2 and its interface with the electrolyte leads to promising results with regard to the aimed application
Ravet, Nathalie. "Développement et caractérisations de constituants d'un système électrochrome tout solide : photo-électrochimie aux interfaces WO3/électrolyte polymère". Grenoble INPG, 1994. http://www.theses.fr/1994INPG0150.
Texto completoCastro, Alexandre. "Développement de batteries tout solide sodium ion à base d’électrolyte en verre de chalcogénures". Thesis, Rennes 1, 2018. http://www.theses.fr/2018REN1S126/document.
Texto completoThe evolution of energy consumption in recent decades has led to major changes in the design of autonomous electrical systems dedicated to either electrical or electronic applications. The present demand to build generators capable of delivering sufficient energy, with a guarantee of maximum safety, requires to explore new storage routes. The current lithium battery routes tend to show their limits, both strategic and environmental. In this context, the construction of new electrochemical systems implementing sodium opens the way of the lithium-free accumulators production. The need for ever more efficient batteries requires innovative designs, giving up the liquid path in favor of stronger solid systems. In addition, the miniaturization of electronics leads to a review of the size of the batteries, to micro-type batteries, for which the interest of a solid stack is no longer to demonstrate. Today, sulfur chalcogenide glasses allow access to ionic conductivities that suggest the possibility of a realization of all solid batteries, both in the form of micro batteries or massive batteries. A research effort has been made to formulate these chalcogenide glasses in order to obtain a maximum of ionic conductivity and properties allowing their use as electrolytes. The composition of these glasses highlights the interest of the different elements for such properties. The study of the electrolyte shaping by thin-film deposition (obtained by Radio Frequency Magnetron Sputering, RFMS) proves the feasibility of these all-solid sodium micro-batteries. Subsequently, the realization of massive all solid batteries required the synthesis of two cathode materials (NaCrO2 and Na [Ni0.25Fe0.5Mn0.25]O2) and two anode materials (Na15Sn4 and Na) thus allowing the implementation of four electrochemical stacks, all characterized as accumulators. Finally, the improvement of the interfaces thanks to a gel-polymer made it possible to improve the properties of the assemblies with notably an increase of the speeds of charge / discharge and an enhanced mobilization of the cathode active materials
Bharwal, Anil. "Cellules solaires à colorant tout solide composées d'une électrode de TiO2 à porosité hiérarchisée et d'un électrolyte polyliquides ioniques à matrice polysiloxane". Thesis, Université Grenoble Alpes (ComUE), 2018. http://www.theses.fr/2018GREAI007/document.
Texto completoDSSC is a 3rd generation photovoltaic technology with potential to economically harvest and efficiently convert photons to electricity. Full solid state-DSSC based on solid polymer electrolyte prevents the solvent leaking and evaporation during cell fabrication and operation, which will effectively prolong the cell life time. However, it suffers from low ionic conductivity and poor pore infiltration.The present thesis is dedicated to the concomitant development of polysiloxane-based polymer electrolytes on one side, and TiO2 photoanodes with tuned porosity on the other side, and their incorporation in solid state dye sensitised solar cell (ss-DSSCs), with the aim to improve their photovoltaic efficiency and the long term stability. To best of our knowledge, DSSCs comprising bimodal TiO2 layers and polysiloxane electrolytes have never been reported.The ionic conductivity and tri-iodide diffusion coefficient of the polysiloxane-based poly(ionic) liquids (PILs) were largely improved by adding of ionic liquids (ILs) or ethylene carbonate (EC), achieving ionic conductivities of 10−4 -10−3 Scm−1. The DSSCs fabricated with the optimized electrolytes showed efficiencies up to 6%, with long term stability for 250 days.Bimodal TiO2 films with dual porosity (meso- and macro-porosity) were fabricated by spin-coating, by using soft and hard templating. The dual templated films benefit from increased pore size while maintaining high surface area for dye adsorption. Bimodal films were shown to be more efficient when tested with polymer electrolytes, having comparable efficiencies with liquid electrolyte when in DSSCs, despite lower dye uptake.This thesis brings a significant contribution to the field of DSSCs as efficient and stable solar cells were prepared from newly synthesized polymer electrolytes and bimodal films
Hallot, Maxime. "Micro-batteries tout solide en technologie Li-ion sur substrats Silicium planaires et tridimensionnels pour objets connectés". Thesis, Lille 1, 2019. http://www.theses.fr/2019LIL1I115.
Texto completoMiniaturized sensors for Internet of Things (IoT) application is in expansion since the last 10 years. All solid-state lithium-ion battery is a promising candidate. Nevertheless, in spite of high technological readiness level, planar micro-batteries suffer from a lack of energy density meaning that it is necessary to develop new architectures to fullfill the performances requirements. 3D structures is needed for such application and this work is focused on the synthesis of positives electrodes with high storage capacity and high operating voltage by Atomic layer deposition (ALD). In the frame of this work,we will rely structurals and electrochemicals properties by differents characterisations techniques for batteries materials
Quemin, Elisa. "Exploring solid-solid interfaces in Li6PS5Cl-based cathode composites for all solid state batteries". Electronic Thesis or Diss., Sorbonne université, 2023. http://www.theses.fr/2023SORUS501.
Texto completoWhile Lithium-ion batteries dominate portable devices, growing safety and energy density demands in electric vehicle batteries have led to the exploration of "beyond Li-ion" technology. All-Solid-State Batteries (ASSBs) have emerged as a promising alternative to Li-ion batteries. Thus, this doctoral research focuses on overcoming challenges hindering the practical implementation of ASSBs, with a specific emphasis on cathode composites. The investigation revolves around a common composite comprising Li6PS5Cl solid electrolyte (SE) and NMC active material (AM). The research unveils the degradation mechanisms within ASSBs, governed by SE/Carbon additive and SE/AM interfaces. It is observed that capacity deterioration, occurring below 3.6 V vs. Li-In/In, is primarily attributed to SE/Carbon interfaces. Conversely, elevating the voltage to 3.9 V shifts the primary degradation source to SE/AM interfaces. Then, the adverse effects of carbon additives on the ionic conduction of composites are demonstrated, particularly when exceeding 2 wt. % VGCF. Moreover, the study delves into the electronic conductivity of carbon-free composites using innovative in situ monitoring. This reveals Li-induced alterations hindering electronic conductivity, especially at high charge levels, notably in high Ni-content NMC. Furthermore, the influence of particle size and morphology on electronic percolation is extensively examined, advocating for minimal VGCF to enhance kinetics and stability. Strategies for effectively incorporating carbon additives while mitigating long-term capacity loss are explored, encompassing assembly pressure, loading, formation cycles, temperature, and carbonate coating. By mixing these optimal conditions, an enhanced cathode composite is introduced, holding promising potential for the progression of All-Solid-State Battery technology
Dussart, Thibaut. "Batterie lithium tout solide : augmentation de la densité de courant critique et procédé innovant de fabrication". Electronic Thesis or Diss., Sorbonne université, 2021. http://www.theses.fr/2021SORUS396.
Texto completoThe first axis of this study focused on the increase in the critical current density achievable in symmetrical cells by modifying certain parameters such as the microstructure, the interface with lithium, or the pressure evaluated. We have shown that even a low pressure on the cells modifies the interface between the solid electrolyte and lithium even in the case of an oxide-based electrolyte; an improvement in ASR is observed when the pressure is increased. An ASR as low as 5 Ω.cm2 has been obtained and a critical current density of 350 µA.cm-2 has thus been achieved. The second axis of this work focused on the study, implementation, and optimization of a sintering process allowing densification at low temperature (120 °C): the cold sintering process. The dissolution/precipitation processes are made possible by the addition of a liquid phase that partly evaporates during sintering and by the application of a pressure of several hundred MPa. We have shown that LLZO solid electrolyte can be densified by adding DMF as the liquid phase. The conductivity measured on the electrolyte can be improved by adding about 4% by weight of a polymer/lithium salt mixture. Thus, a conductivity of 2.2 × 10-4 S.cm-1 can be obtained at 25 ° C. Then we showed that a temperature as low as 120 ° C allows LLZO and an electrode material to co-sinter without the formation of a secondary phase
Hennequart, Benjamin. "Engineering Strategies to Improve All-Solid-State Battery Performance under Low-Pressure Conditions". Electronic Thesis or Diss., Sorbonne université, 2023. http://www.theses.fr/2023SORUS638.
Texto completoAs the global shift towards renewable energy sources and electric vehicles gains momentum, lithium-ion batteries (LIBs) are seen as a building block of a decarbonised future. To meet the growing need for higher energy density and safety, all-solid state batteries (ASSBs) have emerged as a promising alternative to traditional liquid-based LIBs. Nonetheless, the implementation of ASSBs faces challenges in many aspects, notably the high operating pressure required for cycling, which prevents the use of the high capacity lithium metal anode crucial for achieving the desired energy density. Thus, this doctoral research is dedicated to addressing the challenge of operating pressure in ASSBs through two key strategies. Initially, utilising a conventional composite electrode, we capitalised on the enhanced chemical and electrochemical stability of halide-based solid electrolytes as well as their low hardness to enable low pressure cycling while accommodating high potential cathode active materials. Secondly, recognising that interfaces in composite electrodes represent a central issue in ASSBs, we utilised the concept of the solid-electrolyte-free electrode. This concept involves the development of an electrode that operates without the need for an additional ionic conductor. The outcome is an increase in energy density and a reduction in the complexity of electrode interfaces. Altogether, both of these strategies enabled cycling at pressures as low as atmospheric pressure and therefore enabled us to attempt the implementation of the lithium metal anodes
Gallot--Duval, Doriane. "Analyse isotopique directe du lithium à haute résolution spatiale. Application à la caractérisation du transport du lithium dans des matériaux d'électrolyte pour les batteries tout solide". Electronic Thesis or Diss., université Paris-Saclay, 2024. http://www.theses.fr/2024UPASF035.
Texto completoLithium isotopic analysis by LIBS is a very promising technique, as it allows rapid, remote analysis, under ambient air atmosphere, with few or no sample preparation steps. In this manuscript, we have developed this technique in order to adapt it to the specific needs of the development of solid electrolytes for 4th generation batteries. These developments require a better understanding of the mobility of lithium ions in a lithiated electrolyte. These mobility properties can be investigated using lithium isotope labeling. There is therefore a need for analytical techniques enabling isotopic analysis with high spatial resolution (≤ 10 µm) of electrolyte materials. Lithium isotopic analysis by LIBS would thus provide complementary information to that obtained by other analytical techniques. This development was carried out in several stages. First, we demonstrated the feasibility of isotope analysis in a solid electrolyte polymer, POE LiTFSI, in a standard ablation configuration at 250 µm lateral resolution. Under these conditions, we explored the possibility of in-depth isotopic analysis of multilayer samples. We were thus able to measure a variation in 6Li isotopic abundance in lithium carbonate included in an epoxy resin with a resolution of 0.74 µm per laser shot. However, this approach proved limited for the analysis of more complex samples such as battery multilayers. We then chose to develop the technique in a micro-ablation configuration so as to be able to carry out measurements on a transverse section rather than at depth. We began by calibrating the 6Li abundance in POE LiTFSI with a lateral resolution of 7 µm and a relative uncertainty of 27%, using 20 laser shots. We then carried out the first semi-quantitative lithium isotope mapping by LIBS of an epoxy sample containing lithium carbonate, with a lateral resolution of 3.3 µm and a relative uncertainty of the order of 40% shot for shot. The results obtained in this thesis pave the way for lithium isotopic labeling by LIBS in battery materials. We hope to obtain diffusion profiles of ⁶Li in the electrochemical system which, in addition to ToF-SIMS and NMR characterizations, will provide a better understanding of ion transportation and provide data to associated modeling
Ferreira, Gomes Franck. "Caractérisation électrochimique de microbatteries Li-Free". Thesis, Université Paris-Saclay (ComUE), 2018. http://www.theses.fr/2018SACLS369/document.
Texto completoTo meet the needs of the miniaturization of mobile electronic systems, the world of energy storage has had to reinvent itself and propose innovative solutions to meet these problems. Among these solutions, all-solid "lithium-free" microbatteries offer many advantages (easy integration, safety aspect), despite their still limited cyclability. The objective of this thesis is to study these LiCoO2/LiPON/Cu microbatteries, in particular by electrochemical characterization, in order to understand their mechanisms and propose solutions to improve their performances. The study of the unit layers of this system made it possible to identify the main properties of each thin film and to know the chemical and structural composition of these layers. Then, the implementation of a charging protocol to significantly improve cycling performance was decoded using electrochemical impedance spectroscopy and XPS. This work allowed the detailed understanding of the physico-chemical mechanisms present at each stage and to describe a scenario as for the operation of this protocol. In addition, understanding these phenomena has been useful in proposing solutions to further increase the cycling resistance of Li-Free microbatteries, so that it can reach an initial capacity and cyclability equivalent to lithium metal microbatteries, used conventionally in microelectronics
Chometon, Ronan. "Exploring the role of polymers in scaling up the manufacturing of solid-state batteries". Electronic Thesis or Diss., Sorbonne université, 2024. http://www.theses.fr/2024SORUS046.
Texto completoThe imperative transition toward renewable energy sources and the ongoing electrification of transportation position battery technologies at the forefront of this transformation. While the lithium-ion technology is already well-established, the quest for higher energy density has drawn significant attention to the emerging solid-state batteries (SSBs). Their working principle is based on ion and electron transfers through solid-solid contacts, which are complex to master and sustain, giving rise to most of the challenges associated with their realisation. Especially, the capability to scale up SSBs' fabrication process is critical for future implementation and calls for a shift from pellet-type to sheet-type assembly. Thus, this doctoral research delved into the role of polymers in facilitating this transition by exploring two strategies differing on the binder's ability to conduct lithium ions. In the first approach, we capitalised on the polymer electrolyte PEO:LiTFSI favourable mechanical properties to prepare self-standing films of hybrid solid electrolyte with a high content of Li6PS5Cl, using a dry process. However, the instability between the organic and inorganic phases resulted in a resistive interphase that prevents a shared conduction mechanism within the hybrid. After that, we pursued a simpler approach to fabricate self-standing SSBs by employing a conventional non-conductive binder, PVDF-HFP, and using a slurry-based tape casting process. The thorough optimisation of the formulation and preparation of the electrodes and solid-state separators gave promising results, closely approaching the electrochemical performance of binder-free reference SSBs, even under low operating pressure. The reliability of our fabrication process thus paves the way for assembling self-standing solid-state full cells, integrating high energy density anodes such as lithium metal
Storelli, Martineau Alexandre. "Étude de l’interface lithium métal/polymère pour l’optimisation des batteries lithium métal tout solide". Thesis, 2020. http://hdl.handle.net/1866/25051.
Texto completoThe increased use of electricity witnessed during the past few decades emphasizes the urgency of developing efficient and performing energy storing devices. Present on the market since the beginning of the 1990s, Lithium-ion (Li-ion) batteries have reached the theoretical limit inherent to their components. Research efforts currently aim at developing all-solid batteries composed of a negative lithium electrode. This type of electrode uses only lithium in its pure metallic state and it has the capacity to attain higher energy densities than those attributable to the lithium-ion batteries. Despite the potential of this promising technology, there is an obstacle that must be overcome in order to ensure its viability: the formation of dendrites and mossy lithium on the surface of the lithium metal negative electrode causes the batteries to short-circuit and reduces their life expectancy. Several solutions have been proposed in the literature in order to either eliminate or mitigate the issues of dendritic growth and mossy lithium. However, published studies do not specifically address the correlation between the state of the surface of the lithium metal and its electrochemical performance when used as the negative electrode (anode). This research project therefore focused on evaluating the impact of the state of the surface the lithium metal negative electrode on its electrochemical performance, such as its lifetime, polarization, and impedance. The lithium sheets and the lithium metal/polymer electrolyte interface were characterized in order to better understand the problematic processes related to the use of the lithium metal in batteries. In addition to studying the sheets in their native form, a protective gold deposit was applied by physical vapor deposition (PVD) on the lithium sheets to determine whether the deposit improved the electrochemical performance of the cells. The physical characterization was performed by using tunnelling atomic force microscopy (Peakforce-TUNA) and scanning electron microscopy (SEM). Each lithium x sheet used was then characterized by X-ray photoelectron spectroscopy (XPS) and coupled plasma mass spectrometry (ICP-MS). These chemical characterizations allowed to determine the surface and bulk chemical compositions of the lithium sheets. Finally, in order to understand the impact of the lithium metal/polymer electrolyte interface on the viability of complete cells, galvanostatic cycling, similar to true operating conditions of a battery, was performed. Cross-sections of these batteries were assessed post-mortem by SEM in order to analyze the impact of the cycling density on the internal state of the cells. It has been determined that the morphology of the lithium foils and the lithium metal/polymer electrolyte interface impacted the lifespan and the polarization of the studied cells. An electrochemical surface preparation method was therefore designed by cycling the lithium electrodes at a low current density (0.130 mA.cm-2), thus improving the life of the symmetrical cells composed of lithium metal electrodes.