Literatura académica sobre el tema "Electroless plating"

Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros

Elija tipo de fuente:

Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Electroless plating".

Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.

También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.

Artículos de revistas sobre el tema "Electroless plating"

1

SAITO, Mamoru. "Electroless Plating. Recent Trend of Electroless Plating." Journal of the Surface Finishing Society of Japan 48, n.º 4 (1997): 375–79. http://dx.doi.org/10.4139/sfj.48.375.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Sun, Hua, Xiao Fei Guo, Ke Gao Liu, Hong Fang Ma y Li Ming Feng. "Influence of Ultrasonic on the Microstructure and Properties of Electroless Plating Ni-Co-P Coating at Low Temperature". Advanced Materials Research 314-316 (agosto de 2011): 259–62. http://dx.doi.org/10.4028/www.scientific.net/amr.314-316.259.

Texto completo
Resumen
By electron energy spectrometer,X-ray diffractometer,transmission elec-tron microscopy andmicro-hardometer,the depositing speed of electrolessNi-Co-P plating baths,chemical composition,crystal structure and microhardness of the alloy coatings were inspected and analyzed with ultrasonic and rare earth metalcerium intervening in electroless Ni-Co-P plating•The results show that the depositing speed of electroless Ni-Co-P plating isobviously increased under the effect of ultrasonic.The chemical compositions of electroless Ni-Co-P plating are changed,The XRD of coating has a diffuse sexual diffraction peak closing to typical amorphous structure.the obtained Ni-Co-P coating has more fine crystal grain, even and dense surface morphology. Its wear resistance and hardness have been improved obviously.
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

HARADA, Hisashi. "Electroless Plating". Journal of the Japan Society of Colour Material 69, n.º 1 (1996): 60–70. http://dx.doi.org/10.4011/shikizai1937.69.60.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

UCHIDA, Ei. "Electroless Plating. Electroless Palladium Plating and Its Applications." Journal of the Surface Finishing Society of Japan 48, n.º 4 (1997): 400–404. http://dx.doi.org/10.4139/sfj.48.400.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

SAKATA, Takahiro y Hideo HONMA. "Electroless copper plating by applying electrolysis." Journal of the Surface Finishing Society of Japan 40, n.º 3 (1989): 488–89. http://dx.doi.org/10.4139/sfj.40.488.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Uraz, Canan y Tuğba Gürmen Özçelik. "ELECTROLESS METAL PLATING OVER ABS PLASTIC". E-journal of New World Sciences Academy 14, n.º 2 (29 de abril de 2019): 63–70. http://dx.doi.org/10.12739/nwsa.2019.14.2.1a0432.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

SHIBATA, Mitsuo. "Electroless Plating. Direct Electroless Nickel Plating on Magnesium Alloys." Journal of the Surface Finishing Society of Japan 48, n.º 4 (1997): 413–16. http://dx.doi.org/10.4139/sfj.48.413.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

KAMIYAMA, Hiroharu. "Electroless copper plating." Circuit Technology 4, n.º 6 (1989): 318–26. http://dx.doi.org/10.5104/jiep1986.4.318.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

HONMA, Hideo, Yasunori KOUCHI y Masaaki OYAMADA. "Electroless Solder Plating." Circuit Technology 6, n.º 6 (1991): 299–305. http://dx.doi.org/10.5104/jiep1986.6.6_299.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Brown, L. D. "Electroless nickel plating". International Materials Reviews 37, n.º 1 (enero de 1992): 196. http://dx.doi.org/10.1179/imr.1992.37.1.196.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.

Tesis sobre el tema "Electroless plating"

1

Garcia, Alexandre. "Ligand Induced Electroless Plating of Polymers". Palaiseau, Ecole polytechnique, 2011. https://pastel.hal.science/docs/00/64/69/62/PDF/ThA_seAGARCIA.pdf.

Texto completo
Resumen
Ce projet de recherche avait pour objectif de répondre à un enjeu industriel: Développer un procédé " propre " de métallisation des polymères sans satinage à l'acide chromique (CrVI). Au cours de ce travail, un procédé alternatif s'appuyant sur une technologie innovante de revêtement de surface (la technologie Graftfast®) a été développé. Ce procédé utilisable dans l'eau et à température ambiante permet de greffer chimiquement des polymères vinyliques sur une large gamme de surfaces de natures différentes. Par cette méthode, une couche d'acide polyacrylique (PAA) a été greffée de manière covalente sur différents substrats polymériques (ABS, ABS-PC, PA, PET, PVC, PVDF. . . ). Les propriétés chélatantes des groupes introduits dans ces films minces de polymères ont été mises à contribution pour l'immobilisation de sels métalliques. Une fois réduites au sein de cette interphase, les particules métalliques ont permis la croissance de la couche métallique par immersion dans un bain Electroless en jouant le rôle de catalyseur. Les couches métalliques résultantes ont montré des propriétés électriques et mécaniques identiques à celles obtenues par les procédés industriels actuels. Combiné à des procédés lithographiques bas coûts et innovants, des motifs métalliques localisés sur substrats flexibles et transparents (PET and PVDF) ont été réalisés à l'échelle micrométrique. Afin de répondre encore plus fortement aux contraintes environnementales et économiques actuelles, le procédé de fonctionnalisation de surface par immersion (Graftfast®) a été remplacé par un procédé par impression jet d'encre photo-assisté. Des motifs métalliques sur substrats flexibles du type papier glacé (PVC) ou transparents (PET) avec une résolution micrométrique ont aussi été réalisés. Ces structures présentent également d'excellentes propriétés électriques et mécaniques et laisse envisager une utilisation de ce procédé pour des applications dans le domaine de la microélectronique
The main goal of this research project was to answer to an industrial issue: To develop a "green" process for the electroless plating of polymers without chromic acid (CrVI) etching. During this work, an alternative process based on an innovative surface coating technology (Graftfast® technology) has been developed. This technique which is working in aqueous solution and at room temperature allows to chemically graft vinylic polymers on various types of substrates. Based on this method, a poly(acrylic acid) (PAA) layer has been covalently grafted onto various polymer substrates (ABS, ABS-PC, PA, PET, PVC, PVDF. . . ). Ion exchange properties introduced in these polymer thin films were used to entrap metal salts. Once reduced into this interphase, copper particles act as catalysts of the metal layer growth by immersion into an electroless plating bath. The resulting metal layer owns mechanical and electrical properties competitive with the current industrial processes. Combined with cost-effective and innovative lithographic processes, metal patterns were obtained onto flexible and transparent substrates (PET, PVDF) at the micrometer scale. In order to answer more appropriately to the current environmental and economic constraints, this "wet" Graftfast® surface functionalization process has been replaced by an inkjet-printed and photo-assisted process. This new process also enables to produce metal patterns onto flexible substrates such as glossy papers (PVC) or transparent sheets (PET) with a micrometric resolution. These devices similarly own excellent electrical and mechanical properties and allow considering its use for applications in the microelectronic field
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Noren, Martin. "Electroless Copper Plating to Achieve Solderless Connections". Thesis, Luleå tekniska universitet, Institutionen för system- och rymdteknik, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-86533.

Texto completo
Resumen
As the world has woken up to the change in climate in recent years, people's environmental concerns are forcing companies to change and find ways to manufacture products without harming nature. One area of serious concern is the electronics industries where an ever-increasing number of products gets updated with sensors and microcomputers to be part of the internet of things. Wen more things are upgraded with electronics, it's important that the production process is as environmentally friendly as possible and that the techniques used introduces a minimum amount of disturbance to the circuits in them.  To tackle this problem, this thesis presents a novel way of manufacturing PCBs without the need for soldering components, a method that increases performance and has substantial environmental benefits. When comparing conventional soldering to the electroless copper plating process presented in this thesis, electroless copper plating uses 67 times less metal and also reduces the parasitic capacitance in the PCB that comes from the solder joints. Utilizing the solder-free method means 67 times less metal needs to be mined, transported, and recycled. Moreover, since lead is a toxic heavy metal that is often part of the solder, decreasing its use in the industry is beneficial for human health and the environment. Nowadays, when the world steadily moves toward products that use technologies like 5G, technologies where higher frequencies are required, their sensitivity to capacitive disturbances from parasitics increases. In this thesis, when comparing the conventional solder method to the non-solder method to attach a capacitor, a significant reduction in phase shift of 0.9° is measured; this change is directly related to the removal of the solder and the parasitic capacitance that comes with it.
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Sullivan, Anne M. "Autocatalytic electroless gold deposition at low pH". Diss., Georgia Institute of Technology, 1995. http://hdl.handle.net/1853/10079.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Krishnan, Vidya. "Electroless deposition of copper for microelectronic applications". Thesis, Georgia Institute of Technology, 2000. http://hdl.handle.net/1853/11752.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Shi, Zhongliang 1965. "Electroless deposited palladium membranes and nanowires". Thesis, McGill University, 2007. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=111872.

Texto completo
Resumen
Hydrogen is considered to be the fuel of the future as it is clean and abundant. Together with the rapidly developing fuel cell technology, it can sustain an environmentally sound and efficient energy supply system. Developing the technologies of palladium-based membrane for hydrogen separation and palladium nanostructured materials for hydrogen sensing and hydrogenation catalysts makes the "hydrogen economy" possible. This is because these technologies will allow for commercially viable production of comparatively cheap and high-quality hydrogen, and safety of its application. Based on the market requirements and interest in the development of a hydrogen economy, the purposes of this thesis are to develop thin palladium membrane for hydrogen separation and to explore an economic method for the synthesis of palladium nanowires in potential engineering applications. The original contributions of this thesis are outlined below:
The investigation of deposition progress of a palladium membrane on porous stainless steel substrate illustrates that palladium deposits will form a network structure on pore areas of the substrate surface in the initial stages. A bridge model is presented to describe the formation of a membrane. This model is confirmed from the cross-section of the deposited membranes. Based on the bridge model and the experimental measurements of palladium membranes deposited on the pore area of the substrates, the thickness of a palladium membrane deposited on 0.2 mum grade porous stainless steel substrate can be effectively controlled around 1.5∼2 mum, and the thickness of a palladium membrane deposited on 2 mum grade porous Inconel substrate can be effectively controlled around 7.5∼8 mum. Comparing the thickness and quality of palladium membranes deposited on the same substrates with the data in the literature, the thicknesses of the membranes prepared in this program are lower. The obtained result will be beneficial in the design and manufacture of suitable membranes using the electroless deposition process.
In the initial deposition stages, palladium nanoparticles cannot be deposited at the surface of the SiO2 inclusions that appear at the substrate surface. With the extension of deposition time, however, palladium nanoparticles gradually cover the SiO2 inclusions layer by layer due to the advance deposited palladium nanoparticles on the steel substrate surrounding them. The effect of the SiO2 inclusions on palladium deposits cannot be neglected when an ultra-thin membrane having the thickness similar to the size of inclusions is to be built.
The chemical reaction between phosphorus (or phosphate) and palladium at high temperature can take place. This reaction causes surface damage of the membranes. If palladium membranes are built on the porous substrates that contain phosphorus or phosphate used in the inorganic binders, they cannot be used over 550°C. This result also implies that palladium membranes cannot be employed on the work environment of phosphorus or phosphates.
Palladium nanowires are well arranged by nanoparticles at the rough stainless steel surface. The formation procedures consist of 3 stages. In the initial stage, palladium nanoparticles are aligned in ore direction, then the nanowire is assembled continuously using follow-up palladium deposits, and finally the nanowire is built smoothly and homogeneously. It is also found that palladium nanoparticles generated from the autocatalytic reaction are not wetting with the steel substrate and they are not solid and easily deformed due to the interfacial tension when they connect to each other.
Various palladium nanowire arrays possessing the morphologies of single wires, parallel and curved wires, intersections and network structures are illustrated. The results demonstrate that palladium nanowires can be built in a self-assembled manner by palladium nanoparticles in the initial deposition stages. Such self-assembled nanowires may attract engineering applications because electroless deposition process and preparation of a substrate are simple and inexpensive.
The diameter of palladium nanowires can be effectively controlled by the concentration of PdCl2 in the plating solution and deposition time. The size of palladium nanoparticles generated from the autocatalytic reaction is directly dependent on the concentration of PdCl2 in the plating solution. The higher the concentration of PdCl2 in the plating solution is, the smaller the deposited palladium nanoparticles are. The experimental results provide a controllable method for the fabrication of palladium nanowire arrays with potential engineering applications.
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Shemesh, Ely 1962. "TERNARY COMPLEXES OF COPPER(I), CYANIDE, AND 2,9-DIMETHYL-1,10-PHENANTHROLINE". Thesis, The University of Arizona, 1986. http://hdl.handle.net/10150/291268.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Owen, S. A. "Corrosion resistance of electroless nickel deposits from aged and synthetic solutions". Thesis, University of Nottingham, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.311914.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Sutch, Peter John F. "Consumption and loss of formaldehyde in electroless copper plating". Master's thesis, University of Central Florida, 1993. http://digital.library.ucf.edu/cdm/ref/collection/RTD/id/21775.

Texto completo
Resumen
University of Central Florida College of Engineering Thesis
The objectives of this research were to quantify formaldehyde consumption due to plating and parasitic reactions and determine the magnitude and distribution of formaldehyde losses from the electroless copper plating process. Plating and rinse bath samples obtained from three electroless copper plating operations were analyzed for formaldehyde and copper in order to develop a mass balance analysis about the plating bath for periods of active production and no production. Fugitive air and stack releases of formaldehyde were estimated using emission factors developed from air sampling at the three facilities. It was determined that approximately 90% of the formaldehyde added to the plating process was sonsumed by some type of chemical reaction. The remaining 10% of formaldehyde represents losses from the plating operation. For the facilities with a waste plating solution stream, atmospheric losses accounted for approximately 25% of the total losses. The mass of fugitive air formaldehyde measured approximately 2.8 times that escaping through the stack. Dragout accounted for approximately 2.3% of the losses with the remaining going to the waste stream. For the facility without a plating solution waste stream, formaldehyde losses were distributed 59% to atmospheric relases and 41% to the rinse tank. Fugitive and stack releases were approximately the same at 29% of the formaldehyde losses. Formaldehyde consumption due to parasitic reactions for periods of active plating and no plating were determined for two facilities. The rate of parasitic consumption during periods of production was found to be approximately 3 times greater than that for no production. The rate of parasitic consumption was observed to increase with increasing bath temperature.
M.S.;
Civil and Environmental Engineering;
Engineering;
Environmental Engineering;
206 p.
xii, 206 leaves, bound : ill. ; 28 cm.
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Zeszut, Ronald Anthony Jr. "Effects of Transport and Additives on Electroless Copper Plating". Case Western Reserve University School of Graduate Studies / OhioLINK, 2017. http://rave.ohiolink.edu/etdc/view?acc_num=case1497271315649528.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Hayden, Harley T. "Enhanced Adhesion Between Electroless Copper and Advanced Substrates". Diss., Georgia Institute of Technology, 2008. http://hdl.handle.net/1853/22615.

Texto completo
Resumen
In this work, adhesion between electrolessly deposited copper and dielectric materials for use in microelectronic devices is investigated. The microelectronics industry requires continuous advances due to ever-evolving technology and the corresponding need for higher density substrates with smaller features. At the same time, adhesion must be maintained in order to preserve package reliability and mechanical performance. In order to meet these requirements two approaches were taken: smoothing the surface of traditional epoxy dielectric materials while maintaining adhesion, and increasing adhesion on advanced dielectric materials through chemical bonding and mechanical anchoring. It was found that NH3 plasma treatments can be effective for increasing both catalyst adsorption and adhesion across a range of materials. This adhesion is achieved through increased nitrogen content on the polymer surface, specifically N=C. This nitrogen interacts with the palladium catalyst particles to form chemical anchors between the polymer surface and the electroless copper layer without the need for roughness. Chemical bonding alone, however, did not enable sufficient adhesion but needed to be supplemented with mechanical anchoring. Traditional epoxy materials were treated with a swell and etch process to roughen the surface and create mechanical anchoring. This same process was found to be ineffective when used on advanced dielectric materials. In order to create controlled roughness on these surfaces a novel method was developed that utilized blends of traditional epoxy with the advanced materials. Finally, combined treatments of surface roughening followed by plasma treatments were utilized to create optimum interfaces between traditional or advanced dielectric materials and electroless copper. In these systems adhesion was measured over 0.5 N/mm with root-mean-square surface roughness as low as 15 nm. In addition, the individual contributions of chemical bonding and mechanical anchoring were identified. The plasma treatment conditions used in these experiments contributed up to 0.25 N/mm to adhesion through purely chemical bonding with minimal roughness generation. Mechanical anchoring accounted for the remainder of adhesion, 0.2-0.8 N/mm depending on the level of roughness created on the surface. Thus, optimized surfaces with very low surface roughness and adequate adhesion were achieved by sequential combination of roughness formation and chemical modifications.
Los estilos APA, Harvard, Vancouver, ISO, etc.

Libros sobre el tema "Electroless plating"

1

O, Mallory Glenn, Hajdu Juan B y American Electroplaters and Surface Finishers Society., eds. Electroless plating: Fundamentals and applications. Orlando, Fla: The Society, 1990.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

American Electroplaters and Surface Finishers Society, ed. Electroless plating: Fundamentals and applications. Orlando, Fla: AESF, 1990.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Masao, Matsuoka, ed. Gendai mudenkai mekki. Tōkyō-to Chūō-ku: Nikkan Kōgyō Shinbunsha, 2014.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Wybrane zagadnienia procesów hezprądowego osadzania warstw niklowo-fosforowych. Warszawa: Wydawnictwa Politechniki Warszawskiej, 1985.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Parkinson, Ron. Properties and applications of electroless nickel. Toronto: Nickel Development Institute, 1997.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Electroless, Nickel '93 Conference (1993 Orlando Fla ). EN Conference 93, November 10-12, 1993, Orlando Airport Marriott, Orlando, Florida: Proceedings. Cincinnati, Ohio (6600 Clough Pike, Cincinnati 45244): Gardner Publications, 1993.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Electroless, Nickel '97 (1997 Cincinnati Ohio). EN Conference 97, Electroless Nickel '97, December 8-10, 1997, Hyatt Regency, Cincinnati, Ohio: Conference proceedings. Cincinnati, Ohio: Gardner Publications, 1997.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Electroless Nickel '91 Conference (1991 Orlando, Fla.). EN Conference 91, November 20-22, 1991, Buena Vista Palace Hotel, Orlando, Florida: Proceedings. Cincinnati, Ohio (6600 Clough Pike, Cincinnati 45244): Garden Publications, 1991.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Kanani, Nasser. Chemische Vernicklung: Nickel-Phosphor-Sichten : Herstellung, Eigenschaften, Anwendungen. Bad Saulgau, Germany: E.G. Leuze, 2007.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Symposium on Electroless Deposition of Metals and Alloys (1987 Honolulu, Hawaii). Proceedings of the Symposium on Electroless Deposition of Metals and Alloys. Pennington, NJ (10 S. Main St., Pennington 08534-2896): Electrochemical Society, 1988.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.

Capítulos de libros sobre el tema "Electroless plating"

1

Gooch, Jan W. "Electroless Plating". En Encyclopedic Dictionary of Polymers, 259–60. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4419-6247-8_4282.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Gooch, Jan W. "Electroless Plating Equipment". En Encyclopedic Dictionary of Polymers, 260. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4419-6247-8_4283.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Broglia, M., P. Pinacci y A. Basile. "Membranes Prepared via Electroless Plating". En Membranes for Membrane Reactors, 315–33. Chichester, UK: John Wiley & Sons, Ltd, 2011. http://dx.doi.org/10.1002/9780470977569.ch11.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Shacham-Diamand, Yosi, Yelena Sverdlov, Stav Friedberg y Avi Yaverboim. "Electroless Plating and Printing Technologies". En Nanomaterials for 2D and 3D Printing, 51–67. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2017. http://dx.doi.org/10.1002/9783527685790.ch3.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Senkevich, Jay J. "ALD Seed Layers for Plating and Electroless Plating". En Advanced Nanoscale ULSI Interconnects: Fundamentals and Applications, 169–79. New York, NY: Springer New York, 2009. http://dx.doi.org/10.1007/978-0-387-95868-2_12.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Viswanathan, B. "Metallization of Plastics by Electroless Plating". En Microwave Materials, 79–99. Berlin, Heidelberg: Springer Berlin Heidelberg, 1994. http://dx.doi.org/10.1007/978-3-662-08740-4_3.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Wen, G., Z. X. Guo y C. K. L. Davies. "Direct Electroless Plating of ZrO2 Powder". En Ceramics - Processing, Reliability, Tribology and Wear, 318–23. Weinheim, FRG: Wiley-VCH Verlag GmbH & Co. KGaA, 2006. http://dx.doi.org/10.1002/3527607293.ch54.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Matsumura, Sowjun y Ju Sheng Ma. "Properties of Electroless Nickel Composite Plating Film". En Materials Science Forum, 1877–80. Stafa: Trans Tech Publications Ltd., 2005. http://dx.doi.org/10.4028/0-87849-960-1.1877.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Olberding, W. "An Introduction to Electrodeposition and Electroless Plating Processes". En Modern Surface Technology, 101–18. Weinheim, FRG: Wiley-VCH Verlag GmbH & Co. KGaA, 2006. http://dx.doi.org/10.1002/3527608818.ch7.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Mahmoudi, Hacene. "Water Recycling in Electroless Plating by Membrane Operations". En Encyclopedia of Membranes, 1999–2000. Berlin, Heidelberg: Springer Berlin Heidelberg, 2016. http://dx.doi.org/10.1007/978-3-662-44324-8_1971.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.

Actas de conferencias sobre el tema "Electroless plating"

1

Ebdon, Paul R. "Electroless Nickel/IPTFE Composites". En Annual Aerospace/Airline Plating and Metal Finishing Forum and Exposition. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 1988. http://dx.doi.org/10.4271/880875.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Rains, Aaron E. y Ronald A. Kline. "Real time monitoring of electroless nickel plating". En REVIEW OF PROGRESS IN QUANTITATIVE NONDESTRUCTIVE EVALUATION: VOLUME 32. AIP, 2013. http://dx.doi.org/10.1063/1.4789211.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Nanzi Fan, Mingliang Huang y Lai Wang. "Electroless nickel-boron plating on magnesium alloy". En High Density Packaging (ICEPT-HDP). IEEE, 2010. http://dx.doi.org/10.1109/icept.2010.5582328.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Yukun, Ren, Ao Hongrui, Jiang Hongyuan, Tao Ye y Li Shanshan. "Dielectrophoresis of Electroless Gold Plating Polystyrene Microspheres". En 2011 International Conference on Measuring Technology and Mechatronics Automation (ICMTMA). IEEE, 2011. http://dx.doi.org/10.1109/icmtma.2011.269.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Wang, Xu, Cheng Zhang y Hongqiang Zhou. "Effect of additives on electroless silver plating". En 2016 6th International Conference on Machinery, Materials, Environment, Biotechnology and Computer. Paris, France: Atlantis Press, 2016. http://dx.doi.org/10.2991/mmebc-16.2016.232.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Yang, Ching-Yun, Han-Tang Hung y C. Robert Kao. "Effects of plating conditions on electroless Ni-P plating in the microchannel". En 2018 International Conference on Electronics Packaging and iMAPS All Asia Conference (ICEP-IAAC). IEEE, 2018. http://dx.doi.org/10.23919/icep.2018.8374673.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Westby, Philip, Kevin Mattson, Fred Haring, Jacob Baer, Matt Steele, Syed Sajid Ahmad y Aaron Reinholz. "Electroless Nickel Plating Process Optimization for Aluminum Terminals". En ASME 2009 InterPACK Conference collocated with the ASME 2009 Summer Heat Transfer Conference and the ASME 2009 3rd International Conference on Energy Sustainability. ASMEDC, 2009. http://dx.doi.org/10.1115/interpack2009-89131.

Texto completo
Resumen
An Electroless Ni plating process for aluminum was evaluated and optimized, leading to smooth and uniform nickel growth approaching 28.2 μm/hr. The effects of temperature, and process time were investigated. Nickel bumping die for solder adhesion was performed and the quality of the adhesion between the nickel and aluminum layers was evaluated.
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Litchfield, R. E., J. Graves, M. Sugden, D. A. Hutt y A. Cobley. "Functionalised copper nanoparticles as catalysts for electroless plating". En 2014 IEEE 16th Electronics Packaging Technology Conference (EPTC). IEEE, 2014. http://dx.doi.org/10.1109/eptc.2014.7028381.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Folkman, Steven L. y Michael Stevens. "Characterization of electroless nickel plating on aluminum mirrors". En International Symposium on Optical Science and Technology, editado por Alson E. Hatheway. SPIE, 2002. http://dx.doi.org/10.1117/12.482167.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Su, Xingsong, Lifei Lai, Chang Li, Wenjun Liu, Xian-Zhu Fu, Rong Sun y C. P. Wong. "Electroless plating alloy thin-film embedded resistor materials". En 2015 16th International Conference on Electronic Packaging Technology (ICEPT). IEEE, 2015. http://dx.doi.org/10.1109/icept.2015.7236584.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.

Informes sobre el tema "Electroless plating"

1

Stencel, Nick y Joyce O'Donnell. Electrolytic Regeneration of Contaminated Electroless Nickel Plating Baths. Fort Belvoir, VA: Defense Technical Information Center, agosto de 1995. http://dx.doi.org/10.21236/ada350616.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Davis, J. S. Waste Reduction for Electroless Nickel Plating Solutions at U.S. Army Depots. Fort Belvoir, VA: Defense Technical Information Center, junio de 1992. http://dx.doi.org/10.21236/ada253404.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Ilias, Shamsuddin y Dhananjay Kumar. Fabrication of Pd/Pd-Alloy Films by Surfactant Induced Electroless Plating for Hydrogen Separation from Advanced Coal Gasification Processes. Office of Scientific and Technical Information (OSTI), julio de 2012. http://dx.doi.org/10.2172/1080430.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
Ofrecemos descuentos en todos los planes premium para autores cuyas obras están incluidas en selecciones literarias temáticas. ¡Contáctenos para obtener un código promocional único!

Pasar a la bibliografía