Literatura académica sobre el tema "Electrochemical silicon etching"

Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros

Elija tipo de fuente:

Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Electrochemical silicon etching".

Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.

También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.

Artículos de revistas sobre el tema "Electrochemical silicon etching"

1

Syari’ati, Ali y Veinardi Suendo. "Effect of Electrochemical Reaction Enviroment on the Surface Morphology and Photoluminescence of Porous Silicon". Materials Science Forum 737 (enero de 2013): 60–66. http://dx.doi.org/10.4028/www.scientific.net/msf.737.60.

Texto completo
Resumen
Porous silicon (p-Si) is a well-known silicon based material that can emit visible light at room temperature. The radiative recombination that originated from quantum confinement effect shows photoluminescence (PL) in red, while the defect on silicon oxide at the surface of p-Si shows in blue-green region. Porous silicon can be synthesized through two methods; wet-etching and electrochemical anodization using hydrofluoric acid as the main electrolyte. The electrochemical anodization is more favorable due to faster etching rate at the surface than the conventional wet-etching method. The objective of this research is to show that both of porous silicons can be synthesized using the same main electrolyte but by varying the reaction environment during anodization/etching process. Here, we shows the wet-etching method that enhanced by polarization concentration will produce porous silicon with silicon oxide defects by means blue-green emission, while direct electrochemical anodization will produce samples that emit red PL signal. The effect of introducing KOH into the electrolyte was also studied in the case of enhanced-wet-etching method. Surface morphology of porous silicon and their photoluminescence were observed by Scanning Electron Microscope and PL spectroscopy, respectively.
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Cao, Dao Tran, Cao Tuan Anh y Luong Truc Quynh Ngan. "Vertical-Aligned Silicon Nanowire Arrays with Strong Photoluminescence Fabricated by Metal-Assisted Electrochemical Etching". Journal of Nanoelectronics and Optoelectronics 15, n.º 1 (1 de enero de 2020): 127–35. http://dx.doi.org/10.1166/jno.2020.2684.

Texto completo
Resumen
Metal-assisted chemical etching of silicon is a commonly used method to fabricate vertical aligned silicon nanowire arrays. In this report we show that if in the above method the chemical etching is replaced by the electrochemical one, we can also produce silicon nanowire arrays, but with a special characteristic-extremely strong photoluminescence. Further research showed that the huge photoluminescence intensity of the silicon nanowire arrays made by metal-assisted electrochemical etching is related to the anodic oxidation of the silicon nanowires which has occurred during the electrochemical etching. It is most likely that the luminescence of the silicon nanowire arrays made with metal-assisted electrochemical etching is the luminescence of silicon nanocrystallites (located on the surface of silicon nanowire fibers) embedded in a silicon oxide matrix, similar to that in a silicon rich oxide system.
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Al-Jubouri, Furqan Saleh, Hamida I. Salman y Ahmed K. Al-Kadumi. "The effective of time etching and different acids on the morphological porous silicon". IOP Conference Series: Earth and Environmental Science 1120, n.º 1 (1 de diciembre de 2022): 012045. http://dx.doi.org/10.1088/1755-1315/1120/1/012045.

Texto completo
Resumen
Abstract This paper study the characteristics of nano crystalline silicon prepared with the use of electrochemical etching with etching time (15,20) min for salt and Nitric acid (HNO3) and etching time (15,20) min for Ethanol and Hydrofluoric acid, and study the effect of this solutions on the characteristics of porous silicon (ps) will be produced by electrochemical etching by using electrochemical etching from p-type bulk silicon with resistivity (1-10 Ω.cm) with different time. after that, make a comparison for the morphological properties for porous silicon. Research employing X-ray diffraction and scanning electron microscopy instruments were also performed on the samples that were produced as a result. Micromachining etching uses electrochemical etching of silicon in HF solution. New wafer-etched structures are reported. Wall arrays, hole arrays, meander-shaped structures, spiral-like walls, microtubes, and more are produced. The electrochemical etch process and KOH etching time of the original pattern on final geometries are modelled.
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Ki, Bugeun, Keorock Choi, Kyunghwan Kim y Jungwoo Oh. "Electrochemical local etching of silicon in etchant vapor". Nanoscale 12, n.º 11 (2020): 6411–19. http://dx.doi.org/10.1039/c9nr10420h.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Martin Kralik, Michaela Hola y Stanislav Jurecka. "Optical Properties of Porous Silicon Solar Cells for Use in Transport". Communications - Scientific letters of the University of Zilina 21, n.º 3 (15 de agosto de 2019): 53–58. http://dx.doi.org/10.26552/com.c.2019.3.53-58.

Texto completo
Resumen
Porous silicon (pSi) samples were prepared by electrochemical etching of p-type silicon (p-type Si) substrate. Three pSi samples with different parameters of electrochemical etching (electrical potential, etching time, etching current) were prepared and analyzed. We studied the influence of electrochemical etching parameters on spectral reflectance of pSi structure. A modification of interference pattern was observed due to changes of microstructure. We determined the thickness of pSi layers from spectral reflectance. Solar cells with a porous structure achieve high efficiency and long life. These solar cells are predestined for use in transport.
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Kim, Jeong, Sang Wook Park, In Sik Moon, Moon Jae Lee y Dae Won Kim. "Porous Silicon Layer by Electrochemical Etching for Silicon Solar Cell". Solid State Phenomena 124-126 (junio de 2007): 987–90. http://dx.doi.org/10.4028/www.scientific.net/ssp.124-126.987.

Texto completo
Resumen
An Electrochemical etching was used to form the porous silicon (PS) layer on the surface of the crystalline silicon wafer. The PS layer, in this study, will act as an antireflection coating to reduce the reflection of the incident light into the solar cell. The etching solution (electrolyte) was prepared by mixing HF (50%) and ethanol which was introduced for efficient bubble elimination on the silicon surface during etching process. The anodization of the silicon surface was performed under a constant current (galvanostat mode of the power supply), and process parameters, such as current density and etching time, were carefully tuned to minimize the surface reflectance of the heavily-doped wafer with sheet resistance between 20-30 / .
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Jin, Dahee, Ju-Myung Kim, Ran Yi y Ji-Guang Zhang. "A New Approach to Synthesis of Porous Si Anode for Li-Ion Batteries Via Organic-Solvent Assisted Etching". ECS Meeting Abstracts MA2024-02, n.º 5 (22 de noviembre de 2024): 570. https://doi.org/10.1149/ma2024-025570mtgabs.

Texto completo
Resumen
Silicon (Si) has been regarded as a promising anode for Li-ion batteries due to its high theoretical capacity (4200 mAh/g) compared to graphite anode (372 mAh/g). However, it undergoes significant volume changes (~ 300%) during lithiation and delithiation, leading to particle pulverization and continuous electrolyte decomposition on Si surface, which hinders its practical application. The porous silicon obtained by wet etching method using hydrogen fluoride (HF) can accommodate the volume changes and improve the overall performance of silicon anodes. However, HF etching is highly corrosive, leading to the generation of excess heat and bubbling, lower yields, and difficult to scale-up. Furthermore, the water in etchant oxidizes the newly exposed Si, generating more SiOx, which also cause over-etching of Si and worsen electrochemical performance. Herein, we report an organic-solvent assistant etching process for Si anode. In this process, selected organic solvent were mixed with the HF etchant. When micron sized Si/SiOx powder was added to the solution, the organic solvent in the mixed solution will preferentially be absorbed on the surface of Si/SiOx powder and form a shield which can enable controlled etching of silicon oxide (SiOx) and prevent direct contact between water and newly etched Si surface. This method leads to controllable etching of Si and avoids bubbling/overheating, results in a higher Si yield. The maximum temperature during the etching process is less than ~30°C. The various process parameters, including etchant composition, stirring speed, and time have been optimized to maximize the yield and electrochemical performance of the Si anode. A Si-based anode with organic-solvent assisted etching process has demonstrated improved cycling performance in a Si||Li(Ni0.6Co0.2Mn0.2)O2 (NMC622) full cell. It also leads to low swelling in both particle and electrode levels required for the next generation of high-energy LIBs. Similar organic-solvent assisted etching process can also be used in safe-etching of a broad range of materials.
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Sadowski, Horst, Reinhard Helbig y Stefan Rysy. "Electrochemical etching of silicon carbide". Journal of Solid State Electrochemistry 3, n.º 7-8 (10 de septiembre de 1999): 437–45. http://dx.doi.org/10.1007/s100080050179.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Mohd Radzi, Ahmad Afif Safwan, M. A. Yarmo, M. Rusop y Saifollah Abdullah. "Surface Morphology and Si 2p Binding Energy Investigation of Multilayer Porous Silicon Nanostructure". Advanced Materials Research 620 (diciembre de 2012): 17–21. http://dx.doi.org/10.4028/www.scientific.net/amr.620.17.

Texto completo
Resumen
Multilayer structure of porous silicon was fabricated using electrochemical etching method. Average thickness of multilayer structure was verified. Surface morphology from Atomic Force Microscopy (AFM) shows that surface roughness was decreased when higher etching time applied to the samples. Si 2p binding energies were corresponded to the composition of void within the silicon which prompted the formation of porous silicon nanostructure. Depth profiling technique from X-Ray photoelectron spectroscopy (XPS) was used for compositional determination of porous silicon layers since samples porosity varied according to current density applied during the electrochemical etching process. Multilayer porous silicon is a high potential candidate for Bragg grating waveguide device.
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Liu, Lan, Yan Xue, Xiao Ming Ren y Rui Zhen Xie. "Influence of Electrochemical Etching Parameters on Morphology of Porous Silicon". Advanced Materials Research 1055 (noviembre de 2014): 68–72. http://dx.doi.org/10.4028/www.scientific.net/amr.1055.68.

Texto completo
Resumen
In order to protect porous silicon from break and enhance it’s porosity and specific surface area, porous silicon is prepared with electrochemical etching method. The charateristic of porous silicon is investigated with SEM and high-speed adsorption surface area and porosity analyzer. The results show that the porous silicon prepared with the method of gradient etching and control of etching time is mechanically stable. The porosity and specfic surface area are improved.
Los estilos APA, Harvard, Vancouver, ISO, etc.

Tesis sobre el tema "Electrochemical silicon etching"

1

Rieger, Melissa Marie. "The electrochemical etching of silicon in nonaqueous solutions". Diss., Georgia Institute of Technology, 1997. http://hdl.handle.net/1853/10214.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Dixon, Elizabeth. "The chemical and electrochemical anisotropic etching of silicon". Thesis, University of Portsmouth, 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.310413.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Ngampeerapong, Chonmanart. "Nanopore Array Fabrication on Bulk Silicon and Silicon Membranes by Electrochemical Etching". Thesis, KTH, Skolan för informations- och kommunikationsteknik (ICT), 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-187023.

Texto completo
Resumen
In this project, nanopore arrays have been fabricated on bulk silicon and on silicon membranes by electrochemical etching. First, the surface of bulk silicon and silicon membranes have been patterned by photolithography and then invert pyramidal pit arrays have been formed by KOH etching. To fabricate nanopore arrays, bulk silicon and silicon membranes with the inverted pyramidal structure were electrochemically etched with backside illumination and by breakdown methods, respectively. Pore morphology was then characterized by scanning electron microscopy (SEM). On bulk silicon, etching by backside illumination did not form promising nanopore arrays; while arrays of nanopores with ~8 nm in diameter have been fabricated to a depth of 18 μm by tuning the applied breakdown bias. On silicon membranes, arrays of nanopores with 18±4 nm diameter have been etched through the membranes with the buried oxide remaining on the backside using the breakdown method.
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Pastushenko, Anton. "Silicon-based nanomaterials obtained by electrochemical etching of metallurgical substrates". Thesis, Lyon, 2016. http://www.theses.fr/2016LYSEI048.

Texto completo
Resumen
Le Silicium est le deuxième élément le plus abondant dans la croûte terrestre après l’oxygène. Il est produit par voie métallurgique dans un four à arc électrique, le quartz est réduit en présence de réducteurs (charbon de bois, houille et coke de pétrole). Le silicium métallurgique est principalement utilisé dans la métallurgie comme élément d’alliage, dans la chimie et l’industrie solaire. Le prix du Silicium est fonction de sa pureté. Les travaux de cette thèse se divisent en deux parties l’utilisation du Silicium Métallurgique (99% Si) pour le stockage de l’hydrogène, et la photoluminescence du ferrosilicium (disiliciure de fer) de qualité métallurgique. Des substrats de silicium métallurgique ont été soumis à une anodisation électrochimique dans une solution à base d’acide fluorhydrique. Le silicium poreux nanostructuré obtenu est légèrement différent du silicium poreux issu de substrat de silicium de qualité électronique de même résistivité. L’influence des principaux paramètres sur la génération de l’hydrogène : la porosité, la concentration, le volume et la température ont fait l’objet d’une étude détaillée. Le silicium poreux produit à partir de silicium métallurgique est un matériau de stockage d’hydrogène. Des substrats de disiliciure de fer de qualité métallurgique ont été soumis à une anodisation électrochimique. Le composé obtenu est du disiliciure de fer nanostructuré avec du silicium résiduel, ce produit est recouvert de fluorosilicate de fer hexahydraté qui a la particularité d’être luminescent. Il s’agit à ce jour de la première anodisation du disiliciure de fer, un mécanisme de gravure a été proposé et l’influence des principaux paramètres d’anodisation sur les propriétés de photoluminescence a été évaluée
Silicon is the second most abundant element in the Earth crust after oxygen. Its use in metallurgy, building and electronic industry requires a huge fabrication level. Depending on the contamination level allowed, the price of this material varies in the orders of magnitude. This thesis focuses on the use of dirtiest metallurgical grade silicon and iron disilicide substrates for hydrogen storage and photoluminescence applications. The initial substrates were subjected to electrochemical etching in hydrofluoric acid-containing solutions. Anodization of metallurgical grade silicon substrate produces nanostructured porous silicon with somewhat shifted parameters (comparing with electronic grade porous silicon with the same resistivity), as it was studied in this thesis in details. It was shown, that metallurgical grade porous silicon can be applied as hydrogen storage material. Hydrogen generation is studied here based on the influences of some technically critical parameters: porosity, alkali concentration, volume and temperature. Electrochemical treatment of metallurgical grade iron disilicide substrates produces luminescent iron fluorosilicate hexahydrate, covering the residual nanostructured iron disilicide/silicon. Here, the influence of anodization parameters on photoluminescent properties is studied. Also, etching mechanism is proposed as for the new material never anodized
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Todorov, Trifonov Trifon. "Photonic Bandgap Analysis and Fabrication of Macroporous Silicon by Electrochemical Etching". Doctoral thesis, Universitat Rovira i Virgili, 2004. http://hdl.handle.net/10803/8477.

Texto completo
Resumen
Los cristales fotónicos son materiales creados artificialmente, que pueden hacer con los fotones lo que los semiconductores ordinarios hacen con los electrones: es decir, pueden mostrar una banda fotónica prohibida (PBG), situación en la cual fotones con determinadas energías no pueden propagarse dentro del cristal independientemente de la polarización y la dirección de propagación. Por lo tanto, la banda prohibida para los fotones puede ser el verdadero análogo óptico de la banda prohibida fundamental en los semiconductores. Desde su invento en 1987, los cristales fotónicos han atraído un interés considerable debido a sus propiedades ópticas inusuales. Las propiedades únicas de los cristales fotónicos también han llevado al reconocimiento de su estudio como un nuevo y principal campo de la optoelectrónica.
El silicio macroporoso con su elevada constante dieléctrica, sus altas relaciones de aspecto y su total compatibilidad con la industria microelectrónica es un modelo excelente para estudiar las propiedades ópticas de cristales fotónicos bidimensionales y asimismo tridimensionales. Adicionalmente, se ha demostrado que el silicio macroporoso tiene varias aplicaciones únicas en muchos otros campos, como la electrónica, el micromecanizado, la detección de gases y la biotecnología. La investigación del silicio macroporoso crece continuamente debido a su enorme potencial de aplicaciones.
El trabajo presentado en esta tesis trata dos temas: simulación de la estructura de bandas fotónicas y análisis de cristales fotónicos bidimensionales, y la fabricación de estructuras bidimensionales basadas en silicio macroporoso para aplicaciones como cristales fotónicos en el espectro infrarrojo.
Debido a que muchas posibles aplicaciones de los cristales fotónicos están basadas
en sus bandas fotónicas prohibidas, es interesante diseñar cristales fotónicos con una banda
prohibida absoluta, que sea tan grande como es posible. En esta tesis describimos el método para alargar la banda fotónica absoluta, mostrando el papel de la simetría en el diseño de estructuras fotónicas óptimas. Hemos estudiado como reduciendo la simetría mediante incorporación de elementos adicionales en la celda unitaria o mediante cambio de la forma de los "átomos" afecta la relación de dispersión de los dos modos de polarización (TM y TE) en cristales fotónicos bidimensionales. Nuestro objetivo ha sido optimizar la magnitud de la banda fotónica absoluta, reduciendo la simetría de las celdas cuadrada y triangular y construir de este modo estructuras nuevas, llamadas celdas híbridas. Usando el método de las deferencias finitas en el dominio de tiempo (FDTD) hemos realizado un detallado análisis numérico de la relación de dispersión en celdas híbridas bidimensionales que consisten en columnas de aire en silicio.
En el caso de celda cuadrada, la reducción de la simetría ha sido aplicada con éxito para maximizar la magnitud de la banda prohibida. Para la celda cuadrada que consiste en columnas cilíndricas de aire, la incorporación de una columna adicional aumenta tres veces la magnitud de la PBG absoluta. En el caso de celda cuadrada de columnas cuadradas de aire, la rotación de las columnas juega un papel crítico en la creación de la PBG absoluta.
Si las columnas cuadradas no están rotadas no existe una PBG absoluta. La magnitud de la PBG absoluta se ha mejorado considerablemente a través de la combinación de incorporación de una columna adicional y rotación de las columnas cuadradas. Además, se genera una nueva PBG absoluta que se encuentra para un amplio rango de ángulos de rotación y dimensiones de las columnas, que están lejos de la condición de empaquetamiento (cuando las columnas se tocan). Esto favorece la fabricación de los cristales fotónicos.
La PBG absoluta es de mayor magnitud para la celda triangular formada por columnas cilíndricas de aire. Los resultados de las simulaciones demuestran que modificando la estructura triangular mediante incorporación de columnas adicionales o mediante columnas cuadradas (aunque las columnas estén rotadas) no mejora la PBG absoluta, por lo menos en el caso estudiado de estructura aire/silicio. La adición de columnas adicionales en la celda triangular reduce la magnitud de la PBG absoluta.
Hemos realizado un detallado análisis cuantitativo de las PBG absolutas para 2D celdas triangulares y hexagonales, considerando que entre las columnas y la matriz dieléctrica hay una capa superficial de otro material dieléctrico. Esta capa superficial puede ser indeseada (resultado del proceso de fabricación) o puede ser creada intencionadamente.
Las propiedades de las bandas fotónicas se ven afectadas del grosor y también de la constante dieléctrica de la capa superficial. Los resultados de las simulaciones demuestran que para estructuras que están formadas por columnas de aire en un material dieléctrico la existencia de una capa superficial reduce la magnitud de la PBG absoluta. Por otro lado, para estructuras formadas de columnas dieléctricas en aire la capa superficial puede mejorar la PBG cuando la constante dieléctrica de la capa es mayor que la de las columnas.
Esto proporciona mayor flexibilidad en la realización práctica de estos 2D cristales fotónicos. Por ejemplo, en ciertas ocasiones es imposible obtener pilares dieléctricos con un diámetro determinado o de un material concreto por limitaciones tecnológicas. Sin embargo, los pilares se pueden fabricar de un material con menor constante dieléctrica para el cual existe una técnica bien desarrollada. Después los pilares se pueden cubrir con el material deseado mediante deposición, obteniendo las mismas propiedades como en el caso de la estructura sin capa superficial.
Hemos desarrollado un equipo de ataque electroquímico para fabricación de 2D estructuras periódicas basadas en la formación de silicio macroporoso. Asimismo, hemos realizado un estudio de la influencia de los parámetros del ataque electroquímico sobre la morfología de los poros. Crecimiento estable de macroporos se puede obtener sólo si todos los parámetros del proceso de ataque (resistividad del substrato, concentración de HF, corriente de ataque, potencial anódico, temperatura, etc.) están ajustados apropiadamente.
Las condiciones óptimas ocupan una pequeña parte de todos los posibles parámetros del proceso. Por ejemplo, concentraciones de HF mayores de 10 wt.%, que se usan generalmente para crecer películas micro- y mesoporosas, no son apropiadas para crecer macroporos con una profundidad grande y una forma cilíndrica. Potenciales relativamente altos (para nuestras muestras mayores de 2 V) aumentan inevitablemente la formación de "breakdown-type" poros. Por otro lado, potenciales relativamente bajos (menores de 1 V) generalmente producen un crecimiento inestable de los poros que están parcial o totalmente recubiertos de silicio microporoso.
La corriente aplicada es el parámetro más crítico del proceso. Densidades de la corriente mayors de la densidad crítica Jps, que depende de la temperatura y de la concentración de HF, situaría el proceso en la región de electropulido. El control de la corriente durante el proceso es una tarea clave. Mantener la corriente de ataque constante durante todo el proceso es insuficiente para el crecimiento estable de macroporos cilíndricos. Se han identificado dos efectos que influyen la forma de los poros en profundidad. Primero, la concentración de HF disminuye cerca de la punta de los poros debido a las limitaciones por difusión en poros estrechos y hondos. Este efecto produce un incremento del diámetro del poro cerca de la punta. Segundo, la superficie interna de los poros aumenta para prolongados tiempos de ataque, provocando un incremento de la corriente de oscuridad y por lo tanto la formación de poros cónicos. Su diámetro decrece en profundidad. El incremento de la corriente de ataque de manera adecuada, tal que se produzca crecimiento de poros con forma cónica inversa, es un método para compensar la conicidad inicial de los poros. Si el ataque se realiza a temperaturas más bajas y burbujeando el electrolito con nitrógeno se puede reducir la corriente de oscuridad, formando poros menos cónicos. Otro método efectivo es el uso de un surfactante apropiado. Los surfactantes se usan por lo general para prevenir degradación causada por las burbujas de hidrógeno que se pegan en la superficie de la muestra. Hemos probado dos diferentes tipos de surfactants (TritonX-100 no iónico y SDS aniónico). Hemos observado que la adición de surfactantes no iónicos aumenta la corriente de oscuridad y la formación de poros cónicos. Por otro lado, el uso de surfactantes aniónicos reduce considerablemente la corriente de oscuridad y poros cilíndricos se pueden producir casi sin dificultad.
Aplicando las reglas explicadas arriba se han obtenido matrices altamente uniformes de macroporos con diferente distribución y dimensiones.
Por último, también se presentan algunos resultados preliminares sobre aplicaciones novedosas de silicio macroporoso. Las características estructurales de las matrices de macroporos se han utilizado para fabricar pilares de óxido de silicio que podrían encontrar aplicaciones en la biotecnología como plataformas tridimensionales para detección de reconocimiento de moléculas o como matrices de microjeringas. También se ha fabricado un filtro que consiste en membranas de silicio macroporoso y se han medido sus características ópticas. Este filtro se comporta como pasabajas cuando la luz incidente es paralela a los poros. Los resultados obtenidos son solamente cuantitativos y sugieren una futura optimización del proceso de ataque para fabricar muestras de alta calidad.
Asimismo se ha introducido modulación periódica del diámetro de los poros en profundidad y se han fabricado matrices de "ratchet-type" macroporos, los cuales podrían tener aplicaciones como dispositivos para separación de partículas. Se ha demostrado que mediante unos pocos pasos adicionales las matrices de macroporos modulados se pueden convertir en microestructuras tridimensionales de huecos interconectados. Esta técnica se puede aplicar para la fabricación de cristales fotónicos tridimensionales.
Photonic crystals are artificially created materials that can do to photons what an ordinary semiconductor does to electrons: that is to say, they can exhibit a photonic band gap, a situation in which photons with certain energies cannot propagate inside the crystal, regardless of polarization and propagation direction. The photonic band gap is therefore likely to be the true optical analog of the fundamental gap of a semiconductor. Since their invention in 1987, photonic crystals have triggered considerable interest because of their unusual optical properties. The unique properties of photonic crystals also led to their study being recognized as a new and major field of optoelectronics.
Macroporous silicon, with its high dielectric contrast, very high aspect ratios and full compatibility with the silicon microelectronic industry is an excellent model system for studying the optical properties of two-dimensional and even three-dimensional photonic crystals. Besides, macroporous silicon has been shown to have several unique uses in many other fields, like electronics, micromachining, gas sensing and biotechnology. Research into macroporous silicon is continuously growing, prompted by its enormous potential for applications.
The work presented in this thesis deals with two subjects: photonic band structure simulations and analysis of 2D photonic crystals, and the fabrication of macroporous silicon structures suitable for application as 2D infrared photonic crystals.
Since many potential applications of photonic crystals are based on their photonic band gaps, it is of interest to design photonic crystals with an absolute band gap that is as large as possible. In this thesis we describe a way to enlarge the absolute photonic band gap, showing the role that symmetry plays in designing optimal photonic structures. We have examined how reducing symmetry by inserting additional elements into the lattice unit cell or by changing the shape of the scatterers alters the dispersion behavior of the TMand TE-polarization modes in 2D photonic crystals. Our goal was to maximize the absolute PBG width by breaking the symmetry of the simple square and triangular lattices and thus to construct new structures, the so-called hybrid lattices. Using the FDTD method for photonic band structure calculations, we performed a detailed numerical analysis of the photonic dispersion relation in 2D hybrid lattices that consist of air holes drilled in silicon.
For square lattices, the symmetry reduction approach has been successfully applied to maximize the absolute PBG width. In the case of square lattices of circular air rods, the inclusion of an additional rod increases the absolute PBG threefold. For the case of square lattices of square air rods, the rotation of the rods plays a critical role in the opening of an absolute PBG. No absolute PBG was found if the square rods were not rotated. The size of the absolute PBG is improved most significantly by a combination of the inclusion of an additional rod and the rotation of square rods. Moreover, a new absolute PBG is generated that persists over a wide range of rotation angles and filling fractions, which are far from the closed-packed condition. This greatly favors the fabrication of photonic crystals.
The largest absolute PBG is the one for the triangular lattice of circular air rods.
Our results have shown that modifying the triangular structure by adding interstitial rods or using square rods (even though the rods are rotated) is not a good way of achieving a larger absolute PBG, at least for the special case of air/silicon structures. Adding more rods to the lattice unit cell cannot further enlarge the absolute PBG width.
We have made a detailed quantitative analysis of the absolute PBGs in 2D triangular and honeycomb lattices considering that there is an interfacial (shell) layer between the rods and the background dielectric matrix. This interfacial layer may be the unwanted result of the fabrication process itself or created intentionally. The properties of the photonic gaps are strongly affected by the thickness and the dielectric constant of the shell layer. The results of band structure simulations show that for structures consisting of air rods embedded in a dielectric background this layer reduces the absolute photonic gap.
For structures consisting of dielectric rods in air, however, an interfacial layer can yield larger photonic gaps if the dielectric constant of the layer is greater than that of the rods.
This provides further flexibility in the practical realization of such 2D photonic crystals.
For example, in certain cases we may not be able to obtain dielectric rods of the required diameter or of the particular material we need because of technological limitations.
However, we are enabled to grow the rods of materials with lower dielectric constants, for which a well-developed technology exists. The rods can then be covered with the required dielectric by deposition, thus achieving almost the same gap properties as those of the ideal shell-less structure.
We have developed an electrochemical etching set-up for fabricating 2D periodic structures based on macroporous silicon formation. We have also made a detailed study of how the electrochemical etching parameters influence the pore morphology. Straight and stable macropores can only be etched if all parameters of the etching process (doping level, HF concentration, etching current, anodic potential, temperature, etc.) are properly adjusted. The optimal conditions are only a very tiny part of the total parametric space, which requires a fine control of the process. For example, HF concentrations higher than 10 wt.%, which are commonly used for growing micro- and mesoporous films, are not suitable for growing deep, straight macropores. Relatively high anodic potentials (e.g. even higher than 2 V for our samples) inevitably enhance the formation of spiking breakdowntype pores on macropore walls. On the other hand, low anodic potentials (less than 1 V) usually lead to unstable pore growth with macropores that are partially or fully filled with microporous silicon.
Of all etching parameters the applied etching current is the most critical. Current densities greater than the critical current density Jps, which depends on the temperature and electrolyte concentration, will move the system into the electropolishing regime.
Controlling the etching current during the process is a key issue. Keeping the etching current constant was found not to be sufficient to grow deep, straight macropores. Two effects that influence the pore shape in depth were identified. First, the decrease in HF concentration towards the pore tips because of diffusional limitations leads to an increase of the pore diameter close to the tip. Second, the pore surface area increases for long anodization times, which leads to an increase in the dark current density and yields conical pores, the diameter of which decreases with depth. Increasing the etching current accordingly, which means to etch pores with the reverse conical shape is one of the methods to reduce the pore conicity. Performing the etching at lower temperatures and bubbling the electrolyte with nitrogen can reduce the dark current and produce less conical pores. Another effective way is to use appropriate surfactants. Surfactants are commonly used to prevent degeneration caused by bubbles sticking to the sample surface. Two surfactants of different types (nonionic TritonX-100 and anionic SDS) were tested. We found that the addition of nonionic surfactants increases the dark current contribution and thus enhances the formation of conical pores. On the other hand, the use of anionic surfactants considerably reduces the dark current and straight pores can be formed almost without difficulty. Highly uniform macropore arrays with different arrangements and dimensions were obtained by applying these "compensation" rules.
Finally, we have also presented some preliminary results of our work on novel applications of macroporous silicon. The structural features of the etched macropore arrays have been exploited to fabricate high-aspect-ratio silicon dioxide pillars, which may have applications in biotechnology as a 3D sensor platform for molecular recognition detections or as dense arrays of microsyringes for fluid delivery or precise chemical reaction stimulation. We have also fabricated a macroporous filter consisting of through-wafer pores and measured its optical characteristics. For light incidence parallel to the pores, a shortpass spectral behavior has been observed. The obtained results are only qualitative and suggest that further optimization of the etching process is needed in order to produce higher quality samples. We were also able to introduce periodic modulations of the pore diameter in depth and to fabricate ratchet-type macropore arrays, which have been envisioned for applications as ratchet devices for large-scale particle separation. We have shown that by a few post-etching steps the modulated macropore arrays can be converted into microstructures consisting of interconnected voids in all three dimensions. The technique used can be exploited for the fabrication of fully 3D photonic crystals.
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Rashid, Mohd Marzaini Bin Mohd. "Optoelectronic properties of nano-structured silicon carbide prepared by anodic electrochemical etching". Thesis, University of Newcastle upon Tyne, 2017. http://hdl.handle.net/10443/3786.

Texto completo
Resumen
Silicon carbide (SiC) nanostructures are appealing as non-toxic, water-stable and oxidation resistant nanomaterials. Owing to these unique properties, 3-dimensionally confined SiC nanostructures, namely SiC quantum dots (QDs) have found applications in bioimaging of living cells. Photoluminescence (PL) investigations however revealed that across the polytypes: 3C-, 4H- and 6H-SiC, excitation wavelength dependent PL is observed for larger sizes but deviate for sizes smaller than approximately 3 nm, thus exhibiting a dual-feature in the PL spectra. Additionally, nanostructures of varying polytypes and bandgaps exhibit strikingly similar PL emission centred at approximately 450 nm. At this wavelength, 3C-SiC emission is above bulk bandgap as expected of quantum size effects, but for 4H-SiC and 6H-SiC the emissions are below bandgap. 4H-SiC is a suitable polytype to study these effects. In this thesis, the hypotheses that mixed phases of polytypes or surface related defects obscuring the quantum confinement of 4H-SiC based nanostructure were investigated. Density functional theory (DFT) calculations within the Ab initio Modelling Programme (AIMPRO) were performed on OH-, F- and H-terminated 4H-SiC QDs with diameters in the range of 10 to 20 A° . The chosen surface terminations relate to the HF/ethanol electrolyte used in preparation of SiC QDs and the choice of size coincide with where deviation was observed in experiments. It was found that the absorption onset energies deviated from quantum confinement with -OH and -F terminations, but conform to the prediction when terminated with -H. The weak size-dependent absorption onsets for -OH and -F is due to surface states arising from lone pair orbitals that are spatially localised to the quantum dot surface where these terminations reside. On the other hand -H termination show strong size-dependent absorption onsets due to delocalisation of the electron wavefunction towards the quantum dot core assisting quantum confinement. It is predicted that the surface related states dominate up to sizes 25 and 27 °A for -F and -OH terminations respectively. As a result, the recombination mechanism would involve the interplay between quantum confinement and surface states affecting the resultant energy gap and the resulting PL. The PL would exhibit a dual-feature: excitation-wavelength independence for small sizes and excitationwavelength dependence for diameters larger than 3 nm as observed in the experiments. Mesoporous 4H-SiC was fabricated by anodic electrochemical etching in ethanoic HF electrolyte. The porous SiC suspended in ethanol exhibited three PL bands, those at wavelengths of 303 nm and 345 nm were rarely reported, above bulk bandgap and indicative of quantum confinement. The usually observed emission at 455 nm was below bulk bandgap. Dual-feature and below bandgap PL observed for wavelengths around 450 nm indicate that mesoporous 4H-SiC exhibited optical properties dictated by both quantum confinement (red-shifting with longer excitation wavelengths) and surface states (below bandgap). X-ray photoelectron spectroscopy provided evidence of -F, C=O and -COOH surface terminations that may contribute to these surface states. Raman scattering data exhibited a red-shift of 12.2 cm�1 and broadening in the lower frequency side of the longitudinal optical (LO) mode peak indicative of carrier depletion, surface phonons or phonon confinement as dimensions were reduced. The following ultrasonication process produced dimensions ranging from 16.9 5.5 down to 2.9 1.0 nm. The data from high resolution transmission electron microscopy (HRTEM) and X-ray diffraction (XRD) showed lattice spacing of 0.267 nm and peaks corresponding to the 4H-SiC polytype. No evidence of polytypic transformation from 4H-SiC to 3C-SiC resulting from ultrasonication was found in this work. Instead high crystallinity of 4H-SiC lattice was retained which suggested that the obscured quantum confinement may arise from surface effects rather than mixed polytypes. Thermal oxidation and subsequent HF dip of mesoporous 4H-SiC resulting in pore wall thinning and surface removal was undertaken. Cross sectional SEM analysis showed reductions in average pore wall thickness to (20.5 2.8) nm, (18.2 2.9) nm, (17.0 1.8) nm and (15.9 1.4) nm for 1, 3, 6 and 9 hours of oxidation respectively. Following ultrasonication, the PL and PL excitation (PLE) characterisation showed absorption/emission band centred at 290/325 nm which were above bandgap. The below bandgap emission centred at 455 nm was removed and is a significant finding. Surface removal by thermal oxidation and HF dip resulted in suppressed below bandgap PL but retained the above bandgap PL. The evidence strongly indicate that the dual-feature PL and below bandgap emission in 4H-SiC seen in experiments are surface related rather than due to polytypic transformation during ultrasonication.
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Nehmann, Julia-Beatrix [Verfasser]. "Investigation of HF-based electrochemical etching solutions for porous silicon / Julia-Beatrix Nehmann". Hannover : Technische Informationsbibliothek und Universitätsbibliothek Hannover (TIB), 2014. http://d-nb.info/1065397801/34.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

SURYAMOORTHY, SOWMYA. "ETCHING TECHNOLOGIES IN SUPPORT OF THE DEVELOPMENT OF A COHERENT POROUS SILICON WICK FOR A MEMS LHP". University of Cincinnati / OhioLINK, 2004. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1078211112.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Juhasz, Robert. "Silicon nanowires, nanopillars and quantum dots : Fabrication and characterization". Doctoral thesis, Stockholm : Solid state elechtronics, Laboratory of materials and semiconductor physics, School of information and communication technology, Royal institute of technology (KTH), 2005. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-420.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Defforge, Thomas. "Optimisation de la gravure de macropores ordonnés dans le silicium et de leur remplissage de cuivre par voie électrochimique : application aux via traversants conducteurs". Thesis, Tours, 2012. http://www.theses.fr/2012TOUR4033/document.

Texto completo
Resumen
Ces travaux de thèse portent sur la fabrication de via traversants conducteurs, brique technologique indispensable pour l’intégration des composants microélectroniques en 3 dimensions. Pour ce faire, une voie « tout-électrochimique » a été explorée en raison de son faible coût de fabrication par rapport aux techniques par voie chimique sèche. Ainsi, la gravure de macropores ordonnés traversants a été réalisée par anodisation du silicium en présence d’acide fluorhydrique puis leur remplissage de cuivre par dépôt électrochimique. L’objectif est de faire du silicium macroporeux une alternative crédible à la gravure sèche (DRIE) pour la structuration du silicium.Les conditions de gravure de matrices de macropores ordonnés traversants ont été étudiées à la fois dans des substrats silicium de type n et p faiblement dopés. La composition de l’électrolyte ainsi que le motif des matrices ont été optimisés afin de garantir la gravure de via traversants de forte densité et à facteur de forme élevé. Une fois gravés, les via traversant ont été remplis de cuivre. En optimisant ces paramètres une résistance minimale égale à 32 mΩ/via (soit 1,06 fois la résistivité théorique du cuivre à 20°C) a été mesurée
These thesis works deal with the achievement of Through Silicon Via (TSV) essential technological issue for microelectronic device 3D integration. For this purpose, we opted for a “full-electrochemical” way of TSV production because of lower fabrication costs as compared to dry etching and deposition techniques. Indeed, ordered through silicon macropores were carried out by silicon anodization in hydrofluoric acid-containing solution and then filled by copper electrochemical deposition. The main objective is to determine if the macroporous silicon arrays can be a viable alternative as Deep Reactive Ion Etching (DRIE).The etching parameters of through silicon macropore arrays were studied both in low-doped n- and p-type silicon. The electrolyte composition as well as the density of the initiation sites was optimized to enable the growth of high aspect ratio, high density through silicon ordered macropores. After silicon anodization, through via were filled with copper. By optimizing the copper deposition parameters (bath composition and applied potential), the resistance per via was measured equal to 32 mΩ (i.e. 1.06 times higher than the theoretical copper bulk resistivity)
Los estilos APA, Harvard, Vancouver, ISO, etc.

Libros sobre el tema "Electrochemical silicon etching"

1

Dixon, Elizabeth. The chemical and electrochemical anisotropic etching of silicon. Portsmouth: University of Portsmouth, School of Pharmacy, Biomedical and Physical Sciences, 1997.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.

Capítulos de libros sobre el tema "Electrochemical silicon etching"

1

Santos, Abel y Tushar Kumeria. "Electrochemical Etching Methods for Producing Porous Silicon". En Electrochemically Engineered Nanoporous Materials, 1–36. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-20346-1_1.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Izuo, Shinichi, Hiroshi Ohji, Patrick J. French y Kazuhiko Tsutsumi. "Electrochemical Etching for n-type Silicon using a Novel Etchant". En Transducers ’01 Eurosensors XV, 632–35. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/978-3-642-59497-7_150.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Kim, Jeong, Sang Wook Park, In Sik Moon, Moon Jae Lee y Dae Won Kim. "Porous Silicon Layer by Electrochemical Etching for Silicon Solar Cell". En Solid State Phenomena, 987–90. Stafa: Trans Tech Publications Ltd., 2007. http://dx.doi.org/10.4028/3-908451-31-0.987.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Tsu, R. y D. Babić. "Doping of a quantum dot and self-limiting effect in electrochemical etching". En Porous Silicon Science and Technology, 111–19. Berlin, Heidelberg: Springer Berlin Heidelberg, 1995. http://dx.doi.org/10.1007/978-3-662-03120-9_7.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Blackwood, Daniel J. y Ee Jin Teo. "Box 13: Silicon Micro/Nano-Fabrication Using Proton Beam Writing and Electrochemical Etching". En Ion Beams in Nanoscience and Technology, 323–28. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-00623-4_27.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Monnier, Lisa. "Elaboration of Self-Organized and Perforated Polymeric Thin Films for Precise Localization of Electrochemical Etching of Silicon". En ATHENA Research Book, Volume 2, 389–94. University of Maribor, University Press, 2023. http://dx.doi.org/10.18690/um.4.2023.21.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Horányi, T. S. y P. Tüttö. "Electrochemical etching and profiling of silicon". En Semiconductor Materials Analysis and Fabrication Process Control, 316–21. Elsevier, 1993. http://dx.doi.org/10.1016/b978-0-444-89908-8.50066-0.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

González, Enrique y Helmut Föll. "Fundamentals of Silicon Porosification via Electrochemical Etching". En Porous Silicon: From Formation to Application: Formation and Properties, Volume One, 29–46. CRC Press, 2015. http://dx.doi.org/10.1201/b19342-5.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

"Fundamentals of Silicon Porosification via Electrochemical Etching". En Porous Silicon: From Formation to Application: Formation and Properties, Volume One, 46–63. CRC Press, 2016. http://dx.doi.org/10.1201/b19342-8.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Burham, Norhafizah, Azrul Azlan Hamzah y Burhanuddin Yeop Majlis. "Self-Adjusting Electrochemical Etching Technique for Producing Nanoporous Silicon Membrane". En New Research on Silicon - Structure, Properties, Technology. InTech, 2017. http://dx.doi.org/10.5772/67719.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.

Actas de conferencias sobre el tema "Electrochemical silicon etching"

1

Long, Yuhong, Liangcai Xiong, Tielin Shi y Zirong Tang. "Study of Excimer Laser Electrochemical Etching Silicon". En 2007 2nd IEEE International Conference on Nano/Micro Engineered and Molecular Systems. IEEE, 2007. http://dx.doi.org/10.1109/nems.2007.352243.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Starosvetsky, David, Mark Kovler y Joseph Yahalom. "Electrochemical etching of silicon in aqueous solutions". En Design, Test, and Microfabrication of MEMS/MOEMS, editado por Bernard Courtois, Selden B. Crary, Wolfgang Ehrfeld, Hiroyuki Fujita, Jean Michel Karam y Karen W. Markus. SPIE, 1999. http://dx.doi.org/10.1117/12.341179.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Barillaro, G. y A. Nannini. "Buried Microchannels by Electrochemical Etching of Silicon". En Proceedings of the 11th Italian Conference. WORLD SCIENTIFIC, 2008. http://dx.doi.org/10.1142/9789812793393_0050.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Azeredo, Bruno, Keng Hsu y Placid Ferreira. "Direct Electrochemical Imprinting of Sinusoidal Linear Gratings Into Silicon". En ASME 2016 11th International Manufacturing Science and Engineering Conference. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/msec2016-8835.

Texto completo
Resumen
Silicon is an excellent transparent material for building IR micro-optical elements such as holographic and blazed gratings, and curvilinear micro-lenses. Shaping this material in 3D with mirror quality finish and single-digit microscale resolution is challenging due to its brittleness and high-melting point. To achieve these patterning characteristics, electron-beam grayscale lithography is typically selected to pattern a 2.5D feature onto a resist thin-film. Subsequently, the film features are transferred into the underlying silicon substrate by deep-reactive ion etching (DRIE) [1]. Small variations in the resist thickness lead to large shape distortions and reduced patterning repeatability. Further, the direct-write nature of e-beam lithography provides for slow throughput. Developing an alternative, parallel and scalable method to nanopatterning silicon with 2.5D geometrical control may impact emerging areas such as the design of sub-wavelength photonic and micro-optic elements for silicon photonics applications. Micro and nanoscale patterning of inorganic semiconductors (e.g. Silicon) requires traditional micromachining processes such as plasma-assisted etching (e.g. DRIE) and wet-etching (e.g. KOH etching). Neither of the aforementioned processes offer the capability to control the geometry in 3D with resolution in the nanoscale range. Thus, it is desirable to develop a low-temperature, low-stress and ambient approach to nanostructuring silicon in 3D. Wet etching approaches are good candidates for achieving such goal because they bypass the need for high-temperature processing and stressing materials beyond the elastic limit. Yet, they still rely on lithographical steps and offer limited sidewall control, restricting the scope of features it can produce. In recent literature, catalyst-based wet etching processes such as metal-assisted chemical etching (MACE) have been shown to pattern high-aspect ratio structures in semiconductors [2–3]. Some researchers have achieved control over the etch profile and etching direction, generating a limited set of interesting 3D objects [4–6]. The degrees of freedom in MACE patterning are still highly constrained due to limited control of the catalyst motion. Additionally, thin-film based MACE relies on intermediate 2D masking steps to pattern the catalyst which are often lithographical. Thus, this indirect approach to patterning silicon increases lead time and processing costs. In this paper, Mac-imprint, a direct imprint configuration of MACE, is introduced to overcome these fundamental barriers. It relies on the use of a catalytic stamp immersed in the etchant and brought against a silicon chip to selectively dissolve it at contact points. Stamps can be reused multiple times to pattern substrates with lifetimes that are dependent solely on its chemical and mechanical degradation. This process is inherently non-lithographic and occurs at room temperature. As a demonstration of its high-resolution capabilities, silicon wafers were patterned with a sinusoidal wave whose pitch and amplitude were 1 μm and 250 nm, respectively. The patterned surface RMS error from the ideal surface was measured to be 13 nm. The key drawback of this approach is the generation of porous defects near the vicinity of the contact interface between stamp and substrate. Its spatial distribution is qualitatively discussed in the context of the diffusion model of MACE [7].
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Xu, Liang, Jinchuan You y Lianwei Wang. "Investigation of nanostructure on silicon by electrochemical etching". En Sixth International Conference on Thin Film Physics and Applications. SPIE, 2008. http://dx.doi.org/10.1117/12.792382.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Wang, Guozheng, Zhenhua Jiang, Yang Wang, Cong Wang, Jikai Yang y Qingduo Duanmu. "Photo-electrochemical etching of macroporous silicon arrays used in silicon microchannel plates". En 2012 International Conference on Optoelectronics and Microelectronics (ICOM). IEEE, 2012. http://dx.doi.org/10.1109/icoom.2012.6316321.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Seidel, H. "The mechanism of anisotropic, electrochemical silicon etching in alkaline solutions". En IEEE 4th Technical Digest on Solid-State Sensor and Actuator Workshop. IEEE, 1990. http://dx.doi.org/10.1109/solsen.1990.109827.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Ding Yuan, Pengliang Ci, Fei Tian, Jing Shi, Shaohui Xu, Peisheng Xin y Lianwei Wang. "The improvement of electrochemical etching process for silicon microchannel plates". En 2009 4th IEEE International Conference on Nano/Micro Engineered and Molecular Systems. IEEE, 2009. http://dx.doi.org/10.1109/nems.2009.5068734.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Bru, Didac Vega, David Cardador Maza y Angel Rodriguez Martinez. "Electrochemical Etching of silicon with sub-500 nm feature size". En 2017 Spanish Conference on Electron Devices (CDE). IEEE, 2017. http://dx.doi.org/10.1109/cde.2017.7905245.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Xiaoming Chen, Jilei Lin, Shaohui Xu, Peisheng Xin y Lianwei Wang. "Oxidation of high area ratio silicon microchannels fabricated by electrochemical etching". En 2008 3rd IEEE International Conference on Nano/Micro Engineered and Molecular Systems. IEEE, 2008. http://dx.doi.org/10.1109/nems.2008.4484290.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.

Informes sobre el tema "Electrochemical silicon etching"

1

Ross, F. M. y P. C. Searson. Dynamic observation of electrochemical etching in silicon. Office of Scientific and Technical Information (OSTI), marzo de 1995. http://dx.doi.org/10.2172/71306.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
Ofrecemos descuentos en todos los planes premium para autores cuyas obras están incluidas en selecciones literarias temáticas. ¡Contáctenos para obtener un código promocional único!

Pasar a la bibliografía