Artículos de revistas sobre el tema "Electrochemical gating"

Siga este enlace para ver otros tipos de publicaciones sobre el tema: Electrochemical gating.

Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros

Elija tipo de fuente:

Consulte los 50 mejores artículos de revistas para su investigación sobre el tema "Electrochemical gating".

Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.

También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.

Explore artículos de revistas sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.

1

Ahonen, Päivi, Virginia Ruiz, Kyösti Kontturi, Peter Liljeroth y Bernadette M. Quinn. "Electrochemical Gating in Scanning Electrochemical Microscopy". Journal of Physical Chemistry C 112, n.º 7 (febrero de 2008): 2724–28. http://dx.doi.org/10.1021/jp0776513.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Liu, Yayuan, Chun-Man Chow, Katherine R. Phillips, Miao Wang, Sahag Voskian y T. Alan Hatton. "Electrochemically mediated gating membrane with dynamically controllable gas transport". Science Advances 6, n.º 42 (octubre de 2020): eabc1741. http://dx.doi.org/10.1126/sciadv.abc1741.

Texto completo
Resumen
The regulation of mass transfer across membranes is central to a wide spectrum of applications. Despite numerous examples of stimuli-responsive membranes for liquid-phase species, this goal remains elusive for gaseous molecules. We describe a previously unexplored gas gating mechanism driven by reversible electrochemical metal deposition/dissolution on a conductive membrane, which can continuously modulate the interfacial gas permeability over two orders of magnitude with high efficiency and short response time. The gating mechanism involves neither moving parts nor dead volume and can therefore enable various engineering processes. An electrochemically mediated carbon dioxide concentrator demonstrates proof of concept by integrating the gating membranes with redox-active sorbents, where gating effectively prevented the cross-talk between feed and product gas streams for high-efficiency, directional carbon dioxide pumping. We anticipate our concept of dynamically regulating transport at gas-liquid interfaces to broadly inspire systems in fields of gas separation, miniaturized devices, multiphase reactors, and beyond.
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Mabeck, Jeffrey T., John A. DeFranco, Daniel A. Bernards, George G. Malliaras, Sandrine Hocdé y Christopher J. Chase. "Microfluidic gating of an organic electrochemical transistor". Applied Physics Letters 87, n.º 1 (4 de julio de 2005): 013503. http://dx.doi.org/10.1063/1.1991979.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Kay, Nicola J., Simon J. Higgins, Jan O. Jeppesen, Edmund Leary, Jess Lycoops, Jens Ulstrup y Richard J. Nichols. "Single-Molecule Electrochemical Gating in Ionic Liquids". Journal of the American Chemical Society 134, n.º 40 (28 de septiembre de 2012): 16817–26. http://dx.doi.org/10.1021/ja307407e.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Leighton, Chris, Turan Birol y Jeff Walter. "What controls electrostatic vs electrochemical response in electrolyte-gated materials? A perspective on critical materials factors". APL Materials 10, n.º 4 (1 de abril de 2022): 040901. http://dx.doi.org/10.1063/5.0087396.

Texto completo
Resumen
Electrolyte-gate transistors are a powerful platform for control of material properties, spanning semiconducting behavior, insulator-metal transitions, superconductivity, magnetism, optical properties, etc. When applied to magnetic materials, for example, electrolyte-gate devices are promising for magnetoionics, wherein voltage-driven ionic motion enables low-power control of magnetic order and properties. The mechanisms of electrolyte gating with ionic liquids and gels vary from predominantly electrostatic to entirely electrochemical, however, sometimes even in single material families, for reasons that remain unclear. In this Perspective, we compare literature ionic liquid and ion gel gating data on two rather different material classes—perovskite oxides and pyrite-structure sulfides—seeking to understand which material factors dictate the electrostatic vs electrochemical gate response. From these comparisons, we argue that the ambient-temperature anion vacancy diffusion coefficient ( not the vacancy formation energy) is a critical factor controlling electrostatic vs electrochemical mechanisms in electrolyte gating of these materials. We, in fact, suggest that the diffusivity of lowest-formation-energy defects may often dictate the electrostatic vs electrochemical response in electrolyte-gated inorganic materials, thereby advancing a concrete hypothesis for further exploration in a broader range of materials.
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Baghernejad, Masoud, David Zsolt Manrique, Chen Li, Thomas Pope, Ulmas Zhumaev, Ilya Pobelov, Pavel Moreno-García et al. "Highly-effective gating of single-molecule junctions: an electrochemical approach". Chem. Commun. 50, n.º 100 (2014): 15975–78. http://dx.doi.org/10.1039/c4cc06519k.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Huang, Cancan, Alexander V. Rudnev, Wenjing Hong y Thomas Wandlowski. "Break junction under electrochemical gating: testbed for single-molecule electronics". Chemical Society Reviews 44, n.º 4 (2015): 889–901. http://dx.doi.org/10.1039/c4cs00242c.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Reuter, H. "Modulation of Ion Channels by Phosphorylation and Second Messengers". Physiology 2, n.º 5 (1 de octubre de 1987): 168–71. http://dx.doi.org/10.1152/physiologyonline.1987.2.5.168.

Texto completo
Resumen
Ion channels are integral membrane proteins that regulate ion fluxes through the membrane;when channels are open, ions can move down their respective electrochemical gradients. The transitions between open-closed conformations, called gating, are regulated either by a change in membrane potential or by binding of ligands. Channel gating as well as channel availability can be modulated by biochemical reactions, such as phosporylation of the channel protein.
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Aragonès, Albert C. y Katrin F. Domke. "Electrochemical gating enhances nearfield trapping of single metalloprotein junctions". Journal of Materials Chemistry C 9, n.º 35 (2021): 11698–706. http://dx.doi.org/10.1039/d1tc01535d.

Texto completo
Resumen
Metalloprotein junctions are used as model systems in the field of molecular bioelectronics to mimic electronic circuits. The junction lifetime increase achieved with electrochemical nearfield trapping enables thorough junction characterisation.
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Smieszek, Nicholas, Siddharth Joshi y Vidhya Chakrapani. "Phase Transitions in Correlated Oxides Modulated through Electrochemical Gating". ECS Meeting Abstracts MA2021-01, n.º 36 (30 de mayo de 2021): 2058. http://dx.doi.org/10.1149/ma2021-01362058mtgabs.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
11

Albrecht, Tim, Stijn F. L. Mertens y J. Ulstrup. "Intrinsic Multistate Switching of Gold Clusters through Electrochemical Gating". Journal of the American Chemical Society 129, n.º 29 (julio de 2007): 9162–67. http://dx.doi.org/10.1021/ja072517h.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
12

Al Baroot, Abbad, Alhulw Alshammari y Martin Grell. "Electrochemical gating of a hydrophobic organic semiconductor with aqueous media". Thin Solid Films 669 (enero de 2019): 665–69. http://dx.doi.org/10.1016/j.tsf.2018.11.032.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
13

Herrera, Santiago, Catherine Adam, Alejandra Ricci y Ernesto J. Calvo. "Electrochemical gating of single osmium molecules tethered to Au surfaces". Journal of Solid State Electrochemistry 20, n.º 4 (8 de agosto de 2015): 957–67. http://dx.doi.org/10.1007/s10008-015-2983-8.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
14

Davis, Jason J., Ben Peters y Wang Xi. "Force modulation and electrochemical gating of conductance in a cytochrome". Journal of Physics: Condensed Matter 20, n.º 37 (26 de agosto de 2008): 374123. http://dx.doi.org/10.1088/0953-8984/20/37/374123.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
15

Tao, Shuhui, Qian Zhang, Andrea Vezzoli, Cezhou Zhao, Chun Zhao, Simon J. Higgins, Alexander Smogunov, Yannick J. Dappe, Richard J. Nichols y Li Yang. "Electrochemical gating for single-molecule electronics with hybrid Au|graphene contacts". Physical Chemistry Chemical Physics 24, n.º 11 (2022): 6836–44. http://dx.doi.org/10.1039/d1cp05486d.

Texto completo
Resumen
A ‘‘off–on–off’’ conductance switching of graphene-contacted single molecular junctions has been reported for the first time using the STM-I(s) method under the electrochemical control. Experimental results are discussed against both a phase coherent tunnelling and an incoherent hopping model.
Los estilos APA, Harvard, Vancouver, ISO, etc.
16

Moreau, Adrien, Pascal Gosselin-Badaroudine y Mohamed Chahine. "Molecular biology and biophysical properties of ion channel gating pores". Quarterly Reviews of Biophysics 47, n.º 4 (noviembre de 2014): 364–88. http://dx.doi.org/10.1017/s0033583514000109.

Texto completo
Resumen
AbstractThe voltage sensitive domain (VSD) is a pivotal structure of voltage-gated ion channels (VGICs) and plays an essential role in the generation of electrochemical signals by neurons, striated muscle cells, and endocrine cells. The VSD is not unique to VGICs. Recent studies have shown that a VSD regulates a phosphatase. Similarly, Hv1, a voltage-sensitive protein that lacks an apparent pore domain, is a self-contained voltage sensor that operates as an H+ channel.VSDs are formed by four transmembrane helices (S1–S4). The S4 helix is positively charged due to the presence of arginine and lysine residues. It is surrounded by two water crevices that extend into the membrane from both the extracellular and intracellular milieus. A hydrophobic septum disrupts communication between these water crevices thus preventing the permeation of ions. The septum is maintained by interactions between the charged residues of the S4 segment and the gating charge transfer center. Mutating the charged residue of the S4 segment allows the water crevices to communicate and generate gating pore or omega pore. Gating pore currents have been reported to underlie several neuronal and striated muscle channelopathies. Depending on which charged residue on the S4 segment is mutated, gating pores are permeant either at depolarized or hyperpolarized voltages. Gating pores are cation selective and seem to converge toward Eisenmann's first or second selectivity sequences. Most gating pores are blocked by guanidine derivatives as well as trivalent and quadrivalent cations. Gating pores can be used to study the movement of the voltage sensor and could serve as targets for novel small therapeutic molecules.
Los estilos APA, Harvard, Vancouver, ISO, etc.
17

Perez-Muñoz, Ana M., Pedro Schio, Roberta Poloni, Alejandro Fernandez-Martinez, Alberto Rivera-Calzada, Julio C. Cezar, Eduardo Salas-Colera et al. "In operando evidence of deoxygenation in ionic liquid gating of YBa2Cu3O7-X". Proceedings of the National Academy of Sciences 114, n.º 2 (27 de diciembre de 2016): 215–20. http://dx.doi.org/10.1073/pnas.1613006114.

Texto completo
Resumen
Field-effect experiments on cuprates using ionic liquids have enabled the exploration of their rich phase diagrams [Leng X, et al. (2011) Phys Rev Lett 107(2):027001]. Conventional understanding of the electrostatic doping is in terms of modifications of the charge density to screen the electric field generated at the double layer. However, it has been recently reported that the suppression of the metal to insulator transition induced in VO2 by ionic liquid gating is due to oxygen vacancy formation rather than to electrostatic doping [Jeong J, et al. (2013) Science 339(6126):1402–1405]. These results underscore the debate on the true nature, electrostatic vs. electrochemical, of the doping of cuprates with ionic liquids. Here, we address the doping mechanism of the high-temperature superconductor YBa2Cu3O7-X (YBCO) by simultaneous ionic liquid gating and X-ray absorption experiments. Pronounced spectral changes are observed at the Cu K-edge concomitant with the superconductor-to-insulator transition, evidencing modification of the Cu coordination resulting from the deoxygenation of the CuO chains, as confirmed by first-principles density functional theory (DFT) simulations. Beyond providing evidence of the importance of chemical doping in electric double-layer (EDL) gating experiments with superconducting cuprates, our work shows that interfacing correlated oxides with ionic liquids enables a delicate control of oxygen content, paving the way to novel electrochemical concepts in future oxide electronics.
Los estilos APA, Harvard, Vancouver, ISO, etc.
18

Kanki, T., T. Sasaki y H. Tanaka. "(Invited) Electrochemical Gating-Induced Hydrogenation in VO2 Nanowires at Room Temperature". ECS Transactions 75, n.º 5 (23 de septiembre de 2016): 103–9. http://dx.doi.org/10.1149/07505.0103ecst.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
19

Pobelov, Ilya V., Zhihai Li y Thomas Wandlowski. "Electrolyte Gating in Redox-Active Tunneling JunctionsAn Electrochemical STM Approach". Journal of the American Chemical Society 130, n.º 47 (26 de noviembre de 2008): 16045–54. http://dx.doi.org/10.1021/ja8054194.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
20

Al-Galiby, Qusiy H., Hatef Sadeghi, David Zsolt Manrique y Colin J. Lambert. "Tuning the Seebeck coefficient of naphthalenediimide by electrochemical gating and doping". Nanoscale 9, n.º 14 (2017): 4819–25. http://dx.doi.org/10.1039/c7nr00571g.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
21

Chen, Fang, Quan Qing, Jilin Xia y Nongjian Tao. "Graphene Field-Effect Transistors: Electrochemical Gating, Interfacial Capacitance, and Biosensing Applications". Chemistry - An Asian Journal 5, n.º 10 (16 de agosto de 2010): 2144–53. http://dx.doi.org/10.1002/asia.201000252.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
22

Akhtar, Anas, Umar Rashid, Charu Seth, Sunil Kumar, Peter Broekmann y Veerabhadrarao Kaliginedi. "Modulating the charge transport in metal│molecule│metal junctions via electrochemical gating". Electrochimica Acta 388 (agosto de 2021): 138540. http://dx.doi.org/10.1016/j.electacta.2021.138540.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
23

Stern, Callie M., Devin D. Meche y Noémie Elgrishi. "Impact of the choice of buffer on the electrochemical reduction of Cr(vi) in water on carbon electrodes". RSC Advances 12, n.º 50 (2022): 32592–99. http://dx.doi.org/10.1039/d2ra05943f.

Texto completo
Resumen
The nature of the buffer influences the PCET step gating Cr(vi) reduction in water at pH 4.75, as well as the extent of deposition on carbon electrodes. Electrode activity is recovered without polishing, through a simple acid wash step.
Los estilos APA, Harvard, Vancouver, ISO, etc.
24

Decoursey, Thomas E. "Voltage-Gated Proton Channels and Other Proton Transfer Pathways". Physiological Reviews 83, n.º 2 (1 de abril de 2003): 475–579. http://dx.doi.org/10.1152/physrev.00028.2002.

Texto completo
Resumen
Proton channels exist in a wide variety of membrane proteins where they transport protons rapidly and efficiently. Usually the proton pathway is formed mainly by water molecules present in the protein, but its function is regulated by titratable groups on critical amino acid residues in the pathway. All proton channels conduct protons by a hydrogen-bonded chain mechanism in which the proton hops from one water or titratable group to the next. Voltage-gated proton channels represent a specific subset of proton channels that have voltage- and time-dependent gating like other ion channels. However, they differ from most ion channels in their extraordinarily high selectivity, tiny conductance, strong temperature and deuterium isotope effects on conductance and gating kinetics, and insensitivity to block by steric occlusion. Gating of H+channels is regulated tightly by pH and voltage, ensuring that they open only when the electrochemical gradient is outward. Thus they function to extrude acid from cells. H+channels are expressed in many cells. During the respiratory burst in phagocytes, H+current compensates for electron extrusion by NADPH oxidase. Most evidence indicates that the H+channel is not part of the NADPH oxidase complex, but rather is a distinct and as yet unidentified molecule.
Los estilos APA, Harvard, Vancouver, ISO, etc.
25

Darwish, Nadim, Ismael Díez-Pérez, Shaoyin Guo, Nongjian Tao, J. Justin Gooding y Michael N. Paddon-Row. "Single Molecular Switches: Electrochemical Gating of a Single Anthraquinone-Based Norbornylogous Bridge Molecule". Journal of Physical Chemistry C 116, n.º 39 (20 de septiembre de 2012): 21093–97. http://dx.doi.org/10.1021/jp3066458.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
26

Hosseini, Seyyedamirhossein, Christopher Madden, Joshua Hihath, Shaoyin Guo, Ling Zang y Zhihai Li. "Single-Molecule Charge Transport and Electrochemical Gating in Redox-Active Perylene Diimide Junctions". Journal of Physical Chemistry C 120, n.º 39 (23 de septiembre de 2016): 22646–54. http://dx.doi.org/10.1021/acs.jpcc.6b06229.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
27

Matsuda, Shoichi, Huan Liu, Atsushi Kouzuma, Kazuya Watanabe, Kazuhito Hashimoto y Shuji Nakanishi. "Electrochemical Gating of Tricarboxylic Acid Cycle in Electricity-Producing Bacterial Cells of Shewanella". PLoS ONE 8, n.º 8 (20 de agosto de 2013): e72901. http://dx.doi.org/10.1371/journal.pone.0072901.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
28

Chen, Fang, Quan Qing, Jilin Xia y Nongjian Tao. "ChemInform Abstract: Graphene Field-Effect Transistors: Electrochemical Gating, Interfacial Capacitance, and Biosensing Applications". ChemInform 42, n.º 3 (23 de diciembre de 2010): no. http://dx.doi.org/10.1002/chin.201103260.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
29

Schewe, Marcus, Ehsan Nematian-Ardestani, Thomas Linke, Klaus Benndorf, Stephen J. Tucker, Markus Rapedius y Thomas Baukrowitz. "Sensing the Electrochemical K+ Gradient: The Voltage Gating Mechanism in K2P Potassium Channels". Biophysical Journal 108, n.º 2 (enero de 2015): 427a—428a. http://dx.doi.org/10.1016/j.bpj.2014.11.2338.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
30

Bös, Christoph, Dirk Lorenzen y Volkmar Braun. "Specific In Vivo Labeling of Cell Surface-Exposed Protein Loops: Reactive Cysteines in the Predicted Gating Loop Mark a Ferrichrome Binding Site and a Ligand-Induced Conformational Change of theEscherichia coli FhuA Protein". Journal of Bacteriology 180, n.º 3 (1 de febrero de 1998): 605–13. http://dx.doi.org/10.1128/jb.180.3.605-613.1998.

Texto completo
Resumen
ABSTRACT The FhuA protein of Escherichia coli K-12 transports ferrichrome, the antibiotic albomycin, colicin M, and microcin 25 across the outer membrane and serves as a receptor for the phages T1, T5, φ80, and UC-1. FhuA is activated by the electrochemical potential of the cytoplasmic membrane, which probably opens a channel in FhuA. It is thought that the proteins TonB, ExbB, and ExbD function as a coupling device between the cytoplasmic membrane and the outer membrane. Excision of 34 residues from FhuA, tentatively designated the gating loop, converts FhuA into a permanently open channel. FhuA contains two disulfide bridges, one in the gating loop and one close to the C-terminal end. Reduction of the disulfide bridges results in a low in vivo reaction of the cysteines in the gating loop and no reaction of the C-terminal cysteines with biotin-maleimide, as determined by streptavidin-β-galactosidase bound to biotin. In this study we show that a cysteine residue introduced into the gating loop by replacement of Asp-336 displayed a rather high reactivity and was used to monitor structural changes in FhuA upon binding of ferrichrome. Flow cytometric analysis revealed fluorescence quenching by ferrichrome and albomycin of fluorescein-maleimide bound to FhuA. Ferrichrome did not inhibit Cys-336 labeling. In contrast, labeling of Cys-347, obtained by replacing Val-347 in the gating loop, was inhibited by ferrichrome, but ferrichrome quenching was negligible. It is concluded that binding of ferrichrome causes a conformational change of the gating loop and that Cys-347 is part of or close to the ferrichrome binding site. Fluorescence quenching was independent of the TonB activity. The newly introduced cysteines and the replacement of the existing cysteines by serine did not alter sensitivity of cells to the FhuA ligands tested (T5, φ80, T1, colicin M, and albomycin) and fully supported growth on ferrichrome as the sole iron source. Since cells of E. coliK-12 display no reactivity to thiol reagents, newly introduced cysteines can be used to determine surface-exposed regions of outer membrane proteins and to monitor conformational changes during their function.
Los estilos APA, Harvard, Vancouver, ISO, etc.
31

Zakhidov, Dante, Daniel A. Rehn, Evan J. Reed y Alberto Salleo. "Reversible Electrochemical Phase Change in Monolayer to Bulk-like MoTe2 by Ionic Liquid Gating". ACS Nano 14, n.º 3 (11 de febrero de 2020): 2894–903. http://dx.doi.org/10.1021/acsnano.9b07095.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
32

Gupta, Satyendra Nath, Anand Pal, D. V. S. Muthu, P. S. Anil Kumar y A. K. Sood. "Metallic monoclinic phase in VO 2 induced by electrochemical gating: In situ Raman study". EPL (Europhysics Letters) 115, n.º 1 (1 de julio de 2016): 17001. http://dx.doi.org/10.1209/0295-5075/115/17001.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
33

Li, Yang, Cheng-Yan Xu, Jing-Kai Qin, Wei Feng, Jia-Ying Wang, Siqi Zhang, Lai-Peng Ma et al. "Tuning the Excitonic States in MoS2/Graphene van der Waals Heterostructures via Electrochemical Gating". Advanced Functional Materials 26, n.º 2 (20 de noviembre de 2015): 293–302. http://dx.doi.org/10.1002/adfm.201503131.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
34

Silvestri, Antonia, Nicola Di Trani, Giancarlo Canavese, Paolo Motto Ros, Leonardo Iannucci, Sabrina Grassini, Yu Wang, Xuewu Liu, Danilo Demarchi y Alessandro Grattoni. "Silicon Carbide-Gated Nanofluidic Membrane for Active Control of Electrokinetic Ionic Transport". Membranes 11, n.º 7 (15 de julio de 2021): 535. http://dx.doi.org/10.3390/membranes11070535.

Texto completo
Resumen
Manipulation of ions and molecules by external control at the nanoscale is highly relevant to biomedical applications. We report a biocompatible electrode-embedded nanofluidic channel membrane designed for electrofluidic applications such as ionic field-effect transistors for implantable drug-delivery systems. Our nanofluidic membrane includes a polysilicon electrode electrically isolated by amorphous silicon carbide (a-SiC). The nanochannel gating performance was experimentally investigated based on the current-voltage (I-V) characteristics, leakage current, and power consumption in potassium chloride (KCl) electrolyte. We observed significant modulation of ionic diffusive transport of both positively and negatively charged ions under physical confinement of nanochannels, with low power consumption. To study the physical mechanism associated with the gating performance, we performed electrochemical impedance spectroscopy. The results showed that the flat band voltage and density of states were significantly low. In light of its remarkable performance in terms of ionic modulation and low power consumption, this new biocompatible nanofluidic membrane could lead to a new class of silicon implantable nanofluidic systems for tunable drug delivery and personalized medicine.
Los estilos APA, Harvard, Vancouver, ISO, etc.
35

Qaswal, Abdallah Barjas. "Quantum Electrochemical Equilibrium: Quantum Version of the Goldman–Hodgkin–Katz Equation". Quantum Reports 2, n.º 2 (28 de abril de 2020): 266–77. http://dx.doi.org/10.3390/quantum2020017.

Texto completo
Resumen
The resting membrane voltage of excitable cells such as neurons and muscle cells is determined by the electrochemical equilibrium of potassium and sodium ions. This voltage is calculated by using the Goldman–Hodgkin–Katz equation. However, from the quantum perspective, ions with significant quantum tunneling through closed channels can interfere with the electrochemical equilibrium and affect the value of the membrane voltage. Hence, in this case the equilibrium becomes quantum electrochemical. Therefore, the model of quantum tunneling of ions is used in this study to modify the Goldman–Hodgkin–Katz equation in such a way to calculate the resting membrane voltage at the point of equilibrium. According to the present calculations, it is found that lithium—with its lower mass—shows a significant depolarizing shift in membrane voltage. In addition to this, when the free gating energy of the closed channels decreases, even sodium and potassium ions depolarize the resting membrane voltage via quantum tunneling. This study proposes the concept of quantum electrochemical equilibrium, at which the electrical potential gradient, the concentration gradient and the quantum gradient (due to quantum tunneling) are balanced. Additionally, this concept may be used to solve many issues and problems in which the quantum behavior becomes more influential.
Los estilos APA, Harvard, Vancouver, ISO, etc.
36

Tang, Tian y Anand Jagota. "Model for Modulation of Conductance in a Carbon Nanotube Field Effect Transistor by Electrochemical Gating". Journal of Computational and Theoretical Nanoscience 5, n.º 10 (1 de octubre de 2008): 1989–96. http://dx.doi.org/10.1166/jctn.2008.1005.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
37

Thomas, Elayne M., Michael A. Brady, Hidenori Nakayama, Bhooshan C. Popere, Rachel A. Segalman y Michael L. Chabinyc. "X-Ray Scattering Reveals Ion-Induced Microstructural Changes During Electrochemical Gating of Poly(3-Hexylthiophene)". Advanced Functional Materials 28, n.º 44 (17 de septiembre de 2018): 1803687. http://dx.doi.org/10.1002/adfm.201803687.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
38

Vanmaekelbergh, D., A. J. Houtepen y J. J. Kelly. "Electrochemical gating: A method to tune and monitor the (opto)electronic properties of functional materials". Electrochimica Acta 53, n.º 3 (diciembre de 2007): 1140–49. http://dx.doi.org/10.1016/j.electacta.2007.02.045.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
39

Supala, Eszter, Luca Tamás, Júlia Erdőssy y Róbert E. Gyurcsányi. "Multiplexed redox gating measurements with a microelectrospotter. Towards electrochemical readout of molecularly imprinted polymer microarrays". Electrochemistry Communications 119 (octubre de 2020): 106812. http://dx.doi.org/10.1016/j.elecom.2020.106812.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
40

Schulze, K. D. "Simulation of the unstable dynamics of excitable biomembranes: Properties of a cyclic electrochemical gating mechanism". Chemical Physics 156, n.º 1 (septiembre de 1991): 43–54. http://dx.doi.org/10.1016/0301-0104(91)87035-t.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
41

Webb, Eric W., Jonathan P. Moerdyk, Kyndra B. Sluiter, Benjamin J. Pollock, Amy L. Speelman, Eugene J. Lynch, William F. Polik y Jason G. Gillmore. "Experimental and computational electrochemistry of quinazolinespirohexadienone molecular switches – differential electrochromic vs photochromic behavior". Beilstein Journal of Organic Chemistry 15 (18 de octubre de 2019): 2473–85. http://dx.doi.org/10.3762/bjoc.15.240.

Texto completo
Resumen
Our undergraduate research group has long focused on the preparation and investigation of electron-deficient analogs of the perimidinespirohexadienone (PSHD) family of photochromic molecular switches for potential application as "photochromic photooxidants" for gating sensitivity to photoinduced charge transfer. We previously reported the photochemistry of two closely related and more reducible quinazolinespirohexadienones (QSHDs), wherein the naphthalene of the PSHD is replaced with a quinoline. In the present work, we report our investigation of the electrochemistry of these asymmetric QSHDs. In addition to the short wavelength and photochromic long-wavelength isomers, we have found that a second, distinct long-wavelength isomer is produced electrochemically. This different long-wavelength isomer arises from a difference in the regiochemistry of spirocyclic ring-opening. The structures of both long-wavelength isomers were ascertained by cyclic voltammetry and 1H NMR analyses, in concert with computational modeling. These results are compared to those for the symmetric parent PSHD, which due to symmetry possesses only a single possible regioisomer upon either electrochemical or photochemical ring-opening. Density functional theory calculations of bond lengths, bond orders, and molecular orbitals allow the rationalization of this differential photochromic vs electrochromic behavior of the QSHDs.
Los estilos APA, Harvard, Vancouver, ISO, etc.
42

Richards, Ryan y Robert E. Dempski. "Adjacent channelrhodopsin-2 residues within transmembranes 2 and 7 regulate cation selectivity and distribution of the two open states". Journal of Biological Chemistry 292, n.º 18 (16 de marzo de 2017): 7314–26. http://dx.doi.org/10.1074/jbc.m116.770321.

Texto completo
Resumen
Channelrhodopsin-2 (ChR2) is a light-activated channel that can conduct cations of multiple valencies down the electrochemical gradient. Under continuous light exposure, ChR2 transitions from a high-conducting open state (O1) to a low-conducting open state (O2) with differing ion selectivity. The molecular basis for the O1 → O2 transition and how ChR2 modulates selectivity between states is currently unresolved. To this end, we used steered molecular dynamics, electrophysiology, and kinetic modeling to identify residues that contribute to gating and selectivity in discrete open states. Analysis of steered molecular dynamics experiments identified three transmembrane residues (Val-86, Lys-93, and Asn-258) that form a putative barrier to ion translocation. Kinetic modeling of photocurrents generated from ChR2 proteins with conservative mutations at these positions demonstrated that these residues contribute to cation selectivity (Val-86 and Asn-258), the transition between the two open states (Val-86), open channel stability, and the hydrogen-bonding network (K93I and K93N). These results suggest that this approach can be used to identify residues that contribute to the open-state transitions and the discrete ion selectivity within these states. With the rise of ChR2 use in optogenetics, it will be critical to identify residues that contribute to O1 or O2 selectivity and gating to minimize undesirable effects.
Los estilos APA, Harvard, Vancouver, ISO, etc.
43

Li, Zhihai, Hui Li, Songjie Chen, Toni Froehlich, Chenyi Yi, Christian Schönenberger, Michel Calame, Silvio Decurtins, Shi-Xia Liu y Eric Borguet. "Regulating a Benzodifuran Single Molecule Redox Switch via Electrochemical Gating and Optimization of Molecule/Electrode Coupling". Journal of the American Chemical Society 136, n.º 25 (16 de junio de 2014): 8867–70. http://dx.doi.org/10.1021/ja5034606.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
44

Wang, Yan, Hui Wang, Yuheng Chen, Yixian Wang, Hong-Yuan Chen, Xiaonan Shan y Nongjian Tao. "Fast Electrochemical and Plasmonic Detection Reveals Multitime Scale Conformational Gating of Electron Transfer in Cytochrome c". Journal of the American Chemical Society 139, n.º 21 (17 de mayo de 2017): 7244–49. http://dx.doi.org/10.1021/jacs.7b00839.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
45

Bai, Jie, Abdalghani Daaoub, Sara Sangtarash, Xiaohui Li, Yongxiang Tang, Qi Zou, Hatef Sadeghi et al. "Anti-resonance features of destructive quantum interference in single-molecule thiophene junctions achieved by electrochemical gating". Nature Materials 18, n.º 4 (11 de febrero de 2019): 364–69. http://dx.doi.org/10.1038/s41563-018-0265-4.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
46

Maruyama, S., J. Shin, X. Zhang, R. Suchoski, S. Yasui, K. Jin, R. L. Greene y I. Takeuchi. "Reversible electrochemical modulation of the superconducting transition temperature of LiTi2O4 ultrathin films by ionic liquid gating". Applied Physics Letters 107, n.º 14 (5 de octubre de 2015): 142602. http://dx.doi.org/10.1063/1.4932551.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
47

Tortello, M., A. Sola, Kanudha Sharda, F. Paolucci, J. R. Nair, C. Gerbaldi, D. Daghero y R. S. Gonnelli. "Huge field-effect surface charge injection and conductance modulation in metallic thin films by electrochemical gating". Applied Surface Science 269 (marzo de 2013): 17–22. http://dx.doi.org/10.1016/j.apsusc.2012.09.157.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
48

Pathirathna, Pavithra, Ryan J. Balla, Guanqun Meng, Zemeng Wei y Shigeru Amemiya. "Nanoscale electrostatic gating of molecular transport through nuclear pore complexes as probed by scanning electrochemical microscopy". Chemical Science 10, n.º 34 (2019): 7929–36. http://dx.doi.org/10.1039/c9sc02356a.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
49

Cronin, S. B., R. Barnett, M. Tinkham, S. G. Chou, O. Rabin, M. S. Dresselhaus, A. K. Swan, M. S. Ünlü y B. B. Goldberg. "Electrochemical gating of individual single-wall carbon nanotubes observed by electron transport measurements and resonant Raman spectroscopy". Applied Physics Letters 84, n.º 12 (22 de marzo de 2004): 2052–54. http://dx.doi.org/10.1063/1.1666997.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
50

Song, Dongsheng, Deqing Xue, Shengwei Zeng, Changjian Li, Thirumalai Venkatesan, Ariando Ariando y Stephen J. Pennycook. "Atomic Origin of Interface‐Dependent Oxygen Migration by Electrochemical Gating at the LaAlO 3 –SrTiO 3 Heterointerface". Advanced Science 7, n.º 15 (28 de junio de 2020): 2000729. http://dx.doi.org/10.1002/advs.202000729.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
Ofrecemos descuentos en todos los planes premium para autores cuyas obras están incluidas en selecciones literarias temáticas. ¡Contáctenos para obtener un código promocional único!

Pasar a la bibliografía