Literatura académica sobre el tema "Electroactive polymers (EAPs)"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Electroactive polymers (EAPs)".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Electroactive polymers (EAPs)"
Wang, Tiesheng, Meisam Farajollahi, Yeon Sik Choi, I.-Ting Lin, Jean E. Marshall, Noel M. Thompson, Sohini Kar-Narayan, John D. W. Madden y Stoyan K. Smoukov. "Electroactive polymers for sensing". Interface Focus 6, n.º 4 (6 de agosto de 2016): 20160026. http://dx.doi.org/10.1098/rsfs.2016.0026.
Texto completoKanaan, Akel F., Ana C. Pinho y Ana P. Piedade. "Electroactive Polymers Obtained by Conventional and Non-Conventional Technologies". Polymers 13, n.º 16 (13 de agosto de 2021): 2713. http://dx.doi.org/10.3390/polym13162713.
Texto completoRahman, Md Hafizur, Harmony Werth, Alexander Goldman, Yuki Hida, Court Diesner, Logan Lane y Pradeep L. Menezes. "Recent Progress on Electroactive Polymers: Synthesis, Properties and Applications". Ceramics 4, n.º 3 (20 de septiembre de 2021): 516–41. http://dx.doi.org/10.3390/ceramics4030038.
Texto completoMaksimkin, Aleksey V., Tarek Dayyoub, Dmitry V. Telyshev y Alexander Yu Gerasimenko. "Electroactive Polymer-Based Composites for Artificial Muscle-like Actuators: A Review". Nanomaterials 12, n.º 13 (1 de julio de 2022): 2272. http://dx.doi.org/10.3390/nano12132272.
Texto completoXu, Wan Lu, Jian Bo Cao, Shi Ju E, Jia Ji, Jia Jiang, Jie Yu y Ruo Yang Wang. "Principle Experiment of Electroactive Polymer Wind-Driven Generator". Advanced Materials Research 305 (julio de 2011): 88–91. http://dx.doi.org/10.4028/www.scientific.net/amr.305.88.
Texto completoBar-Cohen, Yoseph y Qiming Zhang. "Electroactive Polymer Actuators and Sensors". MRS Bulletin 33, n.º 3 (marzo de 2008): 173–81. http://dx.doi.org/10.1557/mrs2008.42.
Texto completoOlvera Bernal, Rigel Antonio, M. V. Uspenskaya y R. O. Olekhnovich. "Biopolymers and its application as electroactive polymers". Proceedings of the Voronezh State University of Engineering Technologies 83, n.º 1 (3 de junio de 2021): 270–77. http://dx.doi.org/10.20914/2310-1202-2021-1-270-277.
Texto completoLi, Yi, Mingfei Guo y Yanbiao Li. "Recent advances in plasticized PVC gels for soft actuators and devices: a review". Journal of Materials Chemistry C 7, n.º 42 (2019): 12991–3009. http://dx.doi.org/10.1039/c9tc04366g.
Texto completoHwang, Jiunn-Jer, Aamna Bibi, Yu-Ci Chen, Kun-Hao Luo, Hsiang-Yuan Huang y Jui-Ming Yeh. "Comparative Studies on Carbon Paste Electrode Modified with Electroactive Polyamic Acid and Corresponding Polyimide without/with Attached Sulfonated Group for Electrochemical Sensing of Ascorbic Acid". Polymers 14, n.º 17 (25 de agosto de 2022): 3487. http://dx.doi.org/10.3390/polym14173487.
Texto completoBass, Patrick S., Lin Zhang y Z. Y. Cheng. "Time-dependence of the electromechanical bending actuation observed in ionic-electroactive polymers". Journal of Advanced Dielectrics 07, n.º 02 (abril de 2017): 1720002. http://dx.doi.org/10.1142/s2010135x17200028.
Texto completoTesis sobre el tema "Electroactive polymers (EAPs)"
Fimbel, Amaury. "Origami à base de matériaux électroactifs pour des applications spatiales". Electronic Thesis or Diss., Lyon, INSA, 2023. http://www.theses.fr/2023ISAL0071.
Texto completoThis thesis project is part of a Cifre collaboration between the Electrical Engineering and Ferro Electricity Laboratory and ArianeGroup. The main subject of this study is the shape shifting of complex structures by using electroactive polymers. Electroactive materials, whose internal conformations are capable of electromechanical energy conversion, are gradually proving their potential for technological breakthroughs in many fields. In addition to the hypothesis that they could eventually replace actual sensors and actuators, the new capabilities of these materials in terms of both performance and multiphysics coupling capacities are a serious source of hope for tackling and solving problems in emerging fields. These potential technological innovations may be of particular interest for aerospace industry. Combination of low density and high mechanical energy density in a polymer seems to offer an attractive answer to the development of innovative, compact and modular devices. However, some parts remain to be explored in order to demonstrate the full application potential of this technology and lead to the development of smart systems. A large part of this research work will focus on this issue. This project will deal with the development and characterization of a high-performance composite for electrostatic actuation and its resistance to ageing in a space environment. The objectives of the mechanical study of origami structures are to find solutions for understanding and developing complex, modular systems. The combination of these two lines opens the way to the creation of very light mechanical structures that can be controlled by an electric field. This thesis concerns space applications, but can also be applied to a wider societal issue, such as medical, robotics or transport sectors
Lochmatter, Patrick. "Development of a shell-like electroactive polymer (EAP) actuator /". München : Verlag Dr. Hut, 2007. http://e-collection.ethbib.ethz.ch/show?type=diss&nr=17221.
Texto completoMallavarapu, Kiran. "Feedback Control of Ionic Polymer Actuators". Thesis, Virginia Tech, 2001. http://hdl.handle.net/10919/34154.
Texto completoMaster of Science
Schroeck, Christopher A. "A Reticulation of Skin-Applied Strain Sensors for Motion Capture". Cleveland State University / OhioLINK, 2019. http://rave.ohiolink.edu/etdc/view?acc_num=csu1560294990047589.
Texto completoLin, I.-Ting. "Dielectric elastomer actuators in electro-responsive surfaces based on tunable wrinkling and the robotic arm for powerful and continuous movement". Thesis, University of Cambridge, 2019. https://www.repository.cam.ac.uk/handle/1810/289711.
Texto completo(6620390), Sang-Won Shim. "Designing Natural Haptic Interfaces and Signals". Thesis, 2019.
Buscar texto completoAfter the initial prototyping efforts, a 2-by-2 vibrotactile display, the palmScape, was conceived and developed. Custom-designed stimulation patterns based on natural phenomena that feel calm and pleasant were designed and implemented with the palmScape. We use text labels to set the context for the vibrotactile icons that attempt to capture and expresses natural metaphors through variations in signal amplitude, frequency, duration, rhythm, modulation, spatial extent, as well as slow movements. Fourteen participants evaluated twenty vibrotactile icons by rating the perceived valence and arousal levels. The twenty stimuli included sixteen custom-designed vibrotactile icons from this thesis research and four reference patterns from two published studies. The results show that our custom-designed patterns were rated at higher valence levels than the corresponding reference signals at similar arousal ratings. Five of the sixteen vibrotactile icons from this research occupied the fourth quadrant of the valence-arousal space that corresponds to calm and pleasant signals. These findings support the validity of the palmScape display and our signal design approach for achieving a calm and pleasant experience and the possibility of reaching a broader range of expressiveness with vibrotactile signals.
Future studies will continue with the design of signals that can express a broader range of metaphors and emotions through the palmScape, and build an emotional evaluation database that can be combined with other modalities. Our work can be further expanded to support an immersive experience with naturalistic-feeling vibrotactile effects and broaden the expressiveness of human-computer interfaces in media consumption, gaming, and other communicative application domains.
Libros sobre el tema "Electroactive polymers (EAPs)"
Yoseph, Bar-Cohen, ed. Electroactive polymer (EAP) actuators as artificial muscles: Reality, potential, and challenges. Bellingham, Wash: SPIE Press, 2001.
Buscar texto completoYoseph, Bar-Cohen, ed. Electroactive polymer (EAP) actuators as artificial muscles: Reality, potential, and challenges. 2a ed. Bellingham, Wash: SPIE Press, 2004.
Buscar texto completoElectroactive Polymers (Eap): Symposium Held November 29-December 1, 1999, Boston, Massachusetts, U.S.A. (Materials Research Society Symposia Proceedings, V. 600.). Materials Research Society, 2000.
Buscar texto completoBar-Cohen, Yoseph. Electroactive Polymer (EAP) Actuators as Artificial Muscles: Reality, Potential, and Challenges, Second Edition (SPIE Press Monograph Vol. PM136). 2a ed. SPIE Publications, 2004.
Buscar texto completoCapítulos de libros sobre el tema "Electroactive polymers (EAPs)"
Pelrine, Ron y Roy Kornbluh. "Dielectric Elastomers as Electroactive Polymers (EAPs): Fundamentals". En Electromechanically Active Polymers, 671–86. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-31530-0_30.
Texto completoPelrine, Ron y Roy Kornbluh. "Dielectric Elastomers as Electroactive Polymers (EAPs): Fundamentals". En Electromechanically Active Polymers, 1–17. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-31767-0_30-1.
Texto completoZarras, P., A. Guenthner, D. J. Irvin, J. D. Stenger-Smith, S. Hawkins, L. Baldwin, R. Quintana et al. "Multi-Functional Electroactive Polymers (EAPs) as Alternatives for Cadmium Based Coatings". En ACS Symposium Series, 133–49. Washington, DC: American Chemical Society, 2010. http://dx.doi.org/10.1021/bk-2010-1050.ch010.
Texto completoSerdas, S., J. Bluhm y J. Schröder. "Simulation of ionic Electroactive Polymers (EAPs) by considering a thermodynamical consistent model within the framework of the theory of porous media". En Insights and Innovations in Structural Engineering, Mechanics and Computation, 453–58. Taylor & Francis Group, 6000 Broken Sound Parkway NW, Suite 300, Boca Raton, FL 33487-2742: CRC Press, 2016. http://dx.doi.org/10.1201/9781315641645-75.
Texto completoBar-Cohen, Yoseph. "Biomimetic Muscles and Actuators Using Electroactive Polymers (EAP)". En Encyclopedia of Nanotechnology, 331–37. Dordrecht: Springer Netherlands, 2016. http://dx.doi.org/10.1007/978-94-017-9780-1_268.
Texto completoKheyraddini Mousavi, Arash, Zayd Chad Leseman, Manuel L. B. Palacio, Bharat Bhushan, Scott R. Schricker, Vishnu-Baba Sundaresan, Stephen Andrew Sarles et al. "Biomimetic Muscles and Actuators Using Electroactive Polymers (EAP)". En Encyclopedia of Nanotechnology, 285–90. Dordrecht: Springer Netherlands, 2012. http://dx.doi.org/10.1007/978-90-481-9751-4_268.
Texto completoDubois, Philippe, Samuel Rosset, Muhamed Niklaus, Massoud Dadras y Herbert Shea. "Metal Ion Implanted Compliant Electrodes in Dielectric Electroactive Polymer (EAP) Membranes". En Artificial Muscle Actuators using Electroactive Polymers, 18–25. Stafa: Trans Tech Publications Ltd., 2008. http://dx.doi.org/10.4028/3-908158-18-4.18.
Texto completoBar-Cohen, Yoseph. "EAP Actuators for Biomimetic Technologies with Humanlike Robots as one of the Ultimate Challenges". En Artificial Muscle Actuators using Electroactive Polymers, 1–7. Stafa: Trans Tech Publications Ltd., 2008. http://dx.doi.org/10.4028/3-908158-18-4.1.
Texto completoStasik, Mark, Jay Sayre, Rachel Thurston, Wes Childers, Aaron Richardson, Megan Moore y Paul Gardner. "Evaluation of Electroactive Polymer (EAP) Concept to Enhance Respirator Facial Seal". En Ceramic Transactions Series, 147–59. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2012. http://dx.doi.org/10.1002/9781118511350.ch15.
Texto completo"Chapter 6 Characterization of EAPs". En Electroactive Polymers, 135–55. De Gruyter, 2021. http://dx.doi.org/10.1515/9783110641066-006.
Texto completoActas de conferencias sobre el tema "Electroactive polymers (EAPs)"
Wang, Jingwen, Hani E. Naguib y Aimy Bazylak. "Investigation of Electroactive Polymers for the PEMFC GDL". En ASME 2010 8th International Conference on Fuel Cell Science, Engineering and Technology. ASMEDC, 2010. http://dx.doi.org/10.1115/fuelcell2010-33168.
Texto completoSpath, William E. y Wayne W. Walter. "Feasibility of Integrating Multiple Types of Electroactive Polymers to Develop an Artificial Human Muscle". En ASME 2010 International Mechanical Engineering Congress and Exposition. ASMEDC, 2010. http://dx.doi.org/10.1115/imece2010-37321.
Texto completoHan, L. H. y T. J. Lu. "Mechanical Properties Measurement of Electroactive Polymers". En ASME 7th Biennial Conference on Engineering Systems Design and Analysis. ASMEDC, 2004. http://dx.doi.org/10.1115/esda2004-58115.
Texto completoKrishnan, Arjun S., Ravi Shankar, Tushar K. Ghosh y Richard J. Spontak. "Nanostructured Triblock Copolymer Network With Tailorable Electroactive Response". En ASME 2008 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. ASMEDC, 2008. http://dx.doi.org/10.1115/smasis2008-529.
Texto completoMinaian, Nazanin, Daniel Fisher y Kwang Jin Kim. "Sensing like aquatic organisms: using electroactive polymers (EAPs) in an artificial lateral line system". En Electroactive Polymer Actuators and Devices (EAPAD) XXVI, editado por John D. Madden, Anne L. Skov y Stefan S. Seelecke. SPIE, 2024. http://dx.doi.org/10.1117/12.3001944.
Texto completoSpath, William E. y Wayne W. Walter. "Development of a Two-Dimensional Model of the Human Arm to Investigate the Biomimetic Substitution of Human Bicep Muscle With a Dielectric Electroactive Polymer Muscle Actuator". En ASME 2012 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/imece2012-85686.
Texto completoThien, Austen y Kishore Pochiraju. "Additive Manufacturing Techniques for Soft Electroactive Polymer Hydrogels Using a Customized 3D Printer". En ASME 2017 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/imece2017-72007.
Texto completoSingh, Nitin Kumar, Kazuto Takashima y Shyam Sudhir Pandey. "Electronic versus Ionic Electroactive Polymers (EAPs) Strain Sensors for Wearable Electronics: A Comparative Study". En I3S2022Warsaw. Basel Switzerland: MDPI, 2022. http://dx.doi.org/10.3390/engproc2022021001.
Texto completoPagano, Claudia, Matteo Malosio y Irene Fassi. "Basic Characterization of a Linear Elastomer Actuator". En ASME 2009 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2009. http://dx.doi.org/10.1115/detc2009-87285.
Texto completoAhmed, Saad y Zoubeida Ounaies. "Self-Clearing of Metalized Electrodes and its Impact on Electroactive Polymer (EAP) Based Actuators". En ASME 2016 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/smasis2016-9107.
Texto completoInformes sobre el tema "Electroactive polymers (EAPs)"
Zhang, Q. M., Takeo Furukawa, Yoseph Bar-Cohen y J. Scheinbeim. Materials Research Society Symposium Proceedings Volume 600, Electroactive Polymers (EAP) Symposium Held in Boston, Massachusetts on November 29-December 1, 1999. Fort Belvoir, VA: Defense Technical Information Center, diciembre de 1999. http://dx.doi.org/10.21236/ada381226.
Texto completo