Tesis sobre el tema "Electrically conductive thermoplastic composites"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte los 25 mejores tesis para su investigación sobre el tema "Electrically conductive thermoplastic composites".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Explore tesis sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.
Karst, Adèle. "Synthèse de particules conductrices à base de PEDOT et mise en œuvre de composites thermoplastiques par extrusion". Electronic Thesis or Diss., Strasbourg, 2023. http://www.theses.fr/2023STRAE030.
Texto completoElectrically conductive polymer materials are among the functional polymer materials with high added value for many emerging applications, particularly in the field of flexible electronics. There are many interesting industrial applications, such as Joule heating and electromagnetic insulation/shielding. This dynamic is now being extended to the plastics processing sector via the emerging technologies of additive manufacturing and plastronics. However, there are still a number of obstacles to be overcome when it comes to the conductive polymers currently available. Recently, PEDOT has made it possible to achieve electrical conductivity levels close to those of metals (around 5000 S/cm). However, PEDOT is an infusible polymer and cannot therefore be processed easily using conventional techniques in the plastics processing industry. To overcome this drawback, the strategy implemented was to use PEDOT as an organic conductive filler by dispersing it in a thermoplastic matrix using extrusion to obtain conductive thermoplastic composites
Rhodes, Susan M. "Electrically Conductive Polymer Composites". University of Akron / OhioLINK, 2007. http://rave.ohiolink.edu/etdc/view?acc_num=akron1194556747.
Texto completoTsotra, Panagiota. "Electrically conductive epoxy matrix composites /". Kaiserslautern : IVW, 2004. http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&doc_number=015387627&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA.
Texto completoAgar, Joshua Carl. "Highly conductive stretchable electrically conductive composites for electronic and radio frequency devices". Thesis, Georgia Institute of Technology, 2011. http://hdl.handle.net/1853/44875.
Texto completoWeber, Mark 1964. "The processing and properties of electrically conductive fiber composites". Thesis, McGill University, 1995. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=40279.
Texto completoTwo models for predicting volume resistivity are proposed. One model assumes that the fibers are aligned end-to-end, and the effect of fiber orientation and concentration is obtained. The results agree qualitatively with experimental data, and give a lower bound or resistivity. More realistic fiber-fiber contacts are considered in the second model. The resistivity is expressed in terms of the area of contact, and orientation, length, and concentration of the fibers. Model predictions are in excellent agreement with experimental results.
MOURA, DOS SANTOS ROSANE. "Development of a Novel Electrically Conductive Flame Retardant Bio-based Thermoplastic Polyurethane". Doctoral thesis, Politecnico di Torino, 2015. http://hdl.handle.net/11583/2589612.
Texto completoTsotra, Panagotia [Verfasser] y Klaus [Akademischer Betreuer] Friedrich. "Electrically Conductive Epoxy Matrix Composites / Panagotia Tsotra ; Betreuer: Klaus Friedrich". Kaiserslautern : Technische Universität Kaiserslautern, 2004. http://d-nb.info/1179776925/34.
Texto completoLi, Zhuo. "Rational design of electrically conductive polymer composites for electronic packaging". Diss., Georgia Institute of Technology, 2014. http://hdl.handle.net/1853/53454.
Texto completoKim, Woo-Jin. "Design of electrically and thermally conductive polymer composites for electronic packaging /". Thesis, Connect to this title online; UW restricted, 1998. http://hdl.handle.net/1773/7055.
Texto completoBarakati, Amir. "Dynamic interactions of electromagnetic and mechanical fields in electrically conductive anisotropic composites". Diss., University of Iowa, 2012. https://ir.uiowa.edu/etd/3562.
Texto completoBertolini, Mayara Cristina. "Flexible and 3D printable conductive composites for pressure sensor applications". Doctoral thesis, Università degli studi di Trento, 2022. https://hdl.handle.net/11572/360281.
Texto completoThe aim of this study was the development of flexible and highly electrically conductive polymer composites via compression molding and fused filament fabrication for possible applications as piezoresistive or piezoelectric materials for pressure sensors. Composites based on blends of poly(vinylidene fluoride)/thermoplastic polyurethane (PVDF/TPU) as matrix and containing various fractions of carbon black-polypyrrole (CB-PPy) as conductive filler were prepared. Several characterization techniques were performed in order to evaluate the mechanical, thermal, chemical and electrical properties, morphology and printability of the investigated materials. First, PVDF/TPU blends with different compositions were prepared by melt compounding followed by compression molding. The results showed that the flexibility aimed for the final materials was improved with the addition of TPU to PVDF composites. SEM images evidenced the achievement of a co-continuous blend comprising 50/50 vol% of PVDF/TPU. The blends composed of PVDF/TPU 38/62 vol% and the co-continuous blend of PVDF/TPU 50/50 vol% were selected as matrices for the preparation of compression molded and 3D printed composites in order to achieve an optimal compromise between electrical conductivity, mechanical properties and printability. Various amounts of carbon black-polypyrrole, from 0 up to 15%, were added to the selected blends in order to rise the electrical conductivity of the composites and to possible act as nucleating filler for the β crystalline phase of PVDF in order to increase its piezoelectric response. The addition of CB-PPy increased the electrical conductivity of all composites. However, the electrical conductivity of composites based on PVDF/TPU 50/50 vol% co-continuous blends was higher than those found for PVDF/TPU 38/62 vol% composites at the same filler content. Indeed, the electrical percolation threshold of the conductive co-continuous composite blends was 2%, while the electrical percolation threshold of the composites with the nonco-continuous composite blends was 5%. With respect to the mechanical properties, the incorporation of the filler into the blends leaded to more rigid materials with higher elastic modulus, lower elongation at break and higher storage modulus. The storage modulus (G’) and complex viscosity (η*) of the composites increased with the addition of CB-PPy. The rheological percolation threshold was found to be 3% for PVDF/TPU/CB-PPy 38/62 vol% and 1% for PVDF/TPU/CB-PPy 50/50 vol%, indicating that higher amount of filler could compromise the processability of the composites. The addition of CB-PPy also resulted in a reduction on the Tg and Tm values of the composites due to the reduction of the mobility of the polymeric chains. Based on the electrical conductivity and mechanical behavior of the composites, three different compositions were selected for the extrusion of filaments to be used in a 3D printing process. Overall, the 3D printed parts presented lower mechanical and electrical properties because of the presence of voids, defects and overlapping layers that can hinder the flow of electrons. The electrical conductivity values of PVDF/TPU/CB-PPy 38/62 vol% composites containing 5% and 6 wt% of CB-PPy 3D printed samples are one to seven orders of magnitude lower than those found for compression molded composites with the same composition. Even if the electrical conductivity value for PVDF/TPU 38/62 vol% compression molded composite with 6% of CB-PPy was as high as 1.94x10-1 S•m-1, the 3D printed composite with same composition showed a very low electrical conductivity of 6.01x10-8 S•m-1. On the other hand, the 3D printed co-continuous composite PVDF/TPU 50/50 vol% with 10% of filler displayed a high value of electrical conductivity of 4.14×100 S•m-1 even after the printing process. Moreover, the piezoresistive responses of the composites were investigated. For PVDF/TPU/CB-PPy 38/62 vol% composites, the compression molded and 3D printed samples with 5% and 6% of CB-PPy exhibited good piezoresistive response. However, only the composites with 6% displayed high sensitivity and gauge factor values, large pressure range and reproducible piezoresistive responses under 100 cycles for both methods. On the other hand, for PVDF/TPU/CB-PPy co-continuous composites only the compression molded sample with 5% of CB-PPy presented good and reproducible piezoresistive responses. The crystallinity and β phase content of PVDF were investigated for the composites. Althought the degree of crystallinity of the samples decreased with the addition of CB-PPy, the percentage of β phase in PVDF was increased. The piezoelectric coefficient d33 of the samples increased with the percentage of β phase. The addition of 6% or more of CB-PPy was necessary to increase significatively the piezoelectric coefficient (d33) of the composites. The β phase content and piezoelectric responses of PVDF were lower for samples prepared by FFF. Finally, as a collateral research, the electromagnetic interference shielding effectiveness (EMI-SE) were measured for all composites. Composites with higher electrical conductivity showed better shielding of the electromagnetic radiation. In addition, composites based on the co-continuous blend displayed higher EMI shielding efficiency than 38/62 vol% composites. The main mechanism of shielding was absorption for all composites. Specimens prepared by FFF displayed diminished EMI-SE responses when compared to compression molded samples.
Lo scopo di questo studio è lo sviluppo di compositi polimerici flessibili e ad elevata conducibilità elettrica tramite stampaggio a compressione e manifattura additiva (fused filament fabrication) per possibili applicazioni come materiali piezoresistivi o piezoelettrici in sensori di pressione. In particolare, sono stati preparati compositi a base di miscele di poli(vinilidene fluoruro)/poliuretano termoplastico (PVDF/TPU) come matrice e contenenti varie frazioni di nerofumo-polipirrolo (CB-PPy) come riempitivo conduttivo. Sono state utilizzate diverse tecniche di caratterizzazione al fine di valutare le proprietà meccaniche, termiche, chimiche ed elettriche, la morfologia e la stampabilità dei materiali ottenuti. In primo luogo, miscele PVDF/TPU con diverse composizioni sono state preparate mediante mescolatura allo stato fuso seguita da stampaggio a compressione. I risultati hanno mostrato che la flessibilità del PVDF viene notevolemente migliorata dall’aggiunta di TPU. Le immagini SEM hanno evidenziato il raggiungimento di una miscela co-continua per una composizione 50/50% in volume di PVDF/TPU. Le miscele composte da PVDF/TPU 38/62 vol% e la miscela co-continua di PVDF/TPU 50/50 vol% sono state selezionate come matrici per la preparazione di compositi per stampaggio a compressione e manifattura additiva al fine di ottenere un compromesso ottimale tra conducibilità, proprietà meccaniche e stampabilità. Alle miscele selezionate sono state aggiunte varie quantità di nerofumo-polipirrolo, dallo 0 al 15%, per aumentare la conducibilità elettrica dei compositi ed eventualmente fungere da additivo nucleante per la fase β cristallina del PVDF al fine di aumentarne la risposta piezoelettrica. L'aggiunta di CB-PPy ha aumentato la conduttività elettrica di tutti i compositi. Tuttavia, la conduttività elettrica dei compositi basati su miscele co-continue di PVDF/TPU 50/50% in volume era superiore a quella trovata per compositi PVDF/TPU 38/62% in volume con lo stesso contenuto di riempitivo. Infatti, la soglia di percolazione elettrica delle miscele conduttive era del 2%, mentre la soglia di percolazione elettrica dei compositi con miscele composite non continue era del 5%. Per quanto riguarda le proprietà meccaniche, l'incorporazione del riempitivo nelle mescole ha portato a materiali più rigidi con modulo elastico più elevato, allungamento a rottura inferiore e modulo conservativo più elevato. Il modulo conservativo (G') e la viscosità complessa (η*) dei compositi sono aumentate con l'aggiunta di CB-PPy. La soglia di percolazione reologica è risultata essere del 3% per PVDF/TPU/CB-PPy 38/62 vol% e dell'1% per PVDF/TPU/CB-PPy 50/50 vol%, indicando che una maggiore quantità di riempitivo potrebbe compromettere la processabilità dei compositi. L'aggiunta di CB-PPy ha comportato anche una riduzione dei valori di Tg e Tm dei compositi a causa della riduzione della mobilità delle catene polimeriche. Sulla base della conduttività elettrica e del comportamento meccanico dei compositi, sono state selezionate tre diverse composizioni per l'estrusione di filamenti da utilizzare in un processo di stampa 3D. Nel complesso, le parti stampate in 3D presentavano proprietà meccaniche ed elettriche inferiori a causa della presenza di vuoti, difetti e strati sovrapposti che possono ostacolare il flusso di elettroni. I valori di conducibilità elettrica dei compositi PVDF/TPU/CB-PPy 38/62 vol% contenenti il 5% e il 6% di CB-PPy di campioni stampati in 3D sono da uno a sette ordini di grandezza inferiori a quelli trovati per i compositi stampati a compressione con la stessa composizione. Anche se il valore di conducibilità elettrica per il composito stampato a compressione PVDF/TPU 38/62 vol% con il 6% di CB-PPy era pari a 1,94x10-1 S•m-1, il composito stampato in 3D con la stessa composizione ha mostrato un valore molto basso di conducibilità elettrica, pari a 6,01x10-8 S•m-1. D'altra parte, il composito PVDF/TPU 50/50 vol% stampato in 3D con il 10% di riempitivo ha mostrato un elevato valore di conducibilità elettrica, pari a 4,14 × 100 S•m-1, anche dopo il processo di stampa. Inoltre, sono state studiate le risposte piezoresistive dei compositi. Per i compositi PVDF/TPU/CB-PPy 38/62 vol%, i campioni stampati a compressione e stampati in 3D con il 5% e il 6% di CB-PPy hanno mostrato una buona risposta piezoresistiva. Tuttavia, solo i compositi con il 6% hanno mostrato valori di sensibilità e gauge factor elevati, ampio intervallo di pressione e risposte piezoresistive riproducibili in 100 cicli per entrambi i metodi. D'altra parte, per i compositi co-continui PVDF/TPU/CB-PPy solo il campione stampato a compressione con il 5% di CB-PPy ha presentato risposte piezoresistive adeguate e riproducibili. La cristallinità e il contenuto di fase β del PVDF sono stati studiati per i compositi. Sebbene il grado di cristallinità dei campioni diminuisca con l'aggiunta di CB-PPy, la percentuale di fase β in PVDF risulta aumentata. Il coefficiente piezoelettrico d33 dei campioni aumenta anch’esso con la percentuale di fase β. L'aggiunta del 6% o più di CB-PPy è stata necessaria per aumentare significativamente il coefficiente piezoelettrico (d33) dei compositi. Il contenuto di fase β e le risposte piezoelettriche del PVDF sono inferiori per i campioni ottenuti mediante stampa 3D. Infine, come ricerca collaterale, è stata misurata l'efficacia della schermatura contro le interferenze elettromagnetiche (EMI-SE) per tutti i compositi. I compositi con una maggiore conduttività elettrica hanno mostrato una migliore schermatura della radiazione elettromagnetica. Inoltre, i compositi basati sulla miscela co-continua hanno mostrato un'efficienza di schermatura EMI maggiore rispetto ai compositi a 38/62% in volume. Per tutti i compositi, il principale meccanismo di schermatura è l'assorbimento. I campioni preparati mediante manifattura additiva hanno mostrato risposte EMI-SE inferiori rispetto ai campioni stampati a compressione.
Hannemann, Benedikt [Verfasser], Ulf Paul [Akademischer Betreuer] Breuer, Gerhard [Akademischer Betreuer] Scharr y Frank [Akademischer Betreuer] Balle. "Multifunctional metal-carbon-fibre composites for damage tolerant and electrically conductive lightweight structures / Benedikt Hannemann ; Ulf Paul Breuer, Gerhard Scharr, Frank Balle". Kaiserslautern : Technische Universität Kaiserslautern, 2017. http://d-nb.info/1159569517/34.
Texto completoYang, Guanda [Verfasser], Dirk [Akademischer Betreuer] Schubert, Fritjof [Akademischer Betreuer] Nilsson, Dirk [Gutachter] Schubert, Fritjof [Gutachter] Nilsson, Georg [Gutachter] Fischer y Kyle [Gutachter] Webber. "Big Data Analysis and Simulation Platform for Anisotropic Electrically Conductive Composites -Validation Utilizing PMMA and Carbon Filler / Guanda Yang ; Gutachter: Dirk Schubert, Fritjof Nilsson, Georg Fischer, Kyle Webber ; Dirk Schubert, Fritjof Nilsson". Erlangen : Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 2021. http://d-nb.info/1228214735/34.
Texto completoBaránek, Šimon. "Elektricky vodivé kompozity na bázi druhotných surovin". Master's thesis, Vysoké učení technické v Brně. Fakulta stavební, 2021. http://www.nusl.cz/ntk/nusl-433564.
Texto completoFlorián, Pavel. "Studium elektrických a dielektrických vlastností alkalicky aktivovaných aluminosilikátů se zvýšenou elektrickou vodivostí". Doctoral thesis, Vysoké učení technické v Brně. Fakulta chemická, 2019. http://www.nusl.cz/ntk/nusl-393991.
Texto completoYeetsorn, Rungsima. "Development of Electrically Conductive Thermoplastic Composites for Bipolar Plate Application in Polymer Electrolyte Membrane Fuel Cell". Thesis, 2010. http://hdl.handle.net/10012/5578.
Texto completoChen, Hsin-Chuan y 陳鑫湶. "Electrical and Mechanical Properties of the Thermoplastic Composites Reinforced by Conductive Fabrics and Verification of Optimum Electromagnetic Effects". Thesis, 2007. http://ndltd.ncl.edu.tw/handle/01452433972760887398.
Texto completo逢甲大學
紡織工程所
95
The main purpose of the research is to prevent the interferences and dangers from electrostatic discharge and electromagnetic interference and also reduce the hazards caused by electromagnetic radiation. Enhance, the Cu/SS/PA6 rotor twisted conductive yarn (RTCY) using for loop, weft (woven fabric only) and warp yarn and the Cu/PPs and SS/PPs rotor twisted conductive cords (RTCC) using for weft-inlaid yarn were fabricated by a Rotor Twister. The results indicated that the better shielding effectiveness and molding outcome of CWKF reinforced composite are fabricated with the parameters for rotor speed of 8000 rpm and weft-inlaid two ends of Cu/PPs and SS/PPs RTCC. Furthermore, the optimum parameters in spinning process were performed again in the two-step spinning method combined with Ring spinning frame and Rotor Twister; and it produced a series of conductive hybrid yarn and cord: NiCu/SS/PP Ring-RTCY using for loop yarn; NiCu/SS/Carbon/PP and NiCu/SS/Kevlar/PP Ring-RTCY using for warp yarn; NiCu/SS/Carbon/PPs and NiCu/SS/Kevlar/PPs Ring-RTCC using for weft-inlaid yarn. The conductive woven fabrics were fabricated with various intervals between Cu/SS/PA6 RTCY via a semi-automatic loom and the conductive co-woven-knitted fabrics (Conductive CWKF) were fabricated with the various (Ring) RTCY and (Ring) RTCC. Then ,the composites were fabricated with 4 or 6 layers of CWKF via the hand-lamination. The thickness of 1- 3 mm for thermoplastic composites reinforced by conductive interlaced woven fabrics or thermoplastic composites reinforced by conductive co-woven-knitted fabrics, were fabricated and cooling naturally at room temperature. The influences of interval between RTCY and laminations on the electromagnetic shielding effectiveness (EMSE), tensile strength and elongation were investigated in this dissertation. Besides, the effects of yarn density and materials in warp and weft directions, content of metal fiber, content of reinforcement fiber, laminating angles, laminations, and thickness on the electromagnetic shielding effectiveness (EMSE) for various measurement system and electromagnetic wave in near/far field, surface resistivity, electrostatic discharge decay (ESD), tensile strength, elongation, storage modulus, loss modulus and loss tangent, tanδ. When the NiCu wire, Kevlar filaments, Carbon filaments are not utilized yet, the optimum shielding effectiveness of CWKF reinforced composite are fabricated with the parameters for the loop yarn of Cu/SS/PA6 RTCY-8k, weft-inlaid two ends of Cu/PPs and SS/PPs RTCC, laminated for 6 layers of CWKF in a thickness of 3 mm. The EMSE of above parameters is about 50 dB in the range of 300 – 1500 MHz and it is around 45 dB in the range of 1.5 – 8.5 GHz. As the NiCu wire, Kevlar filaments, Carbon filaments are utilized in the spinning process, the optimum shielding effectiveness of CWKF reinforced composite are fabricated with the parameters for the loop yarn of NiCu/SS/PP Ring-RTCY, weft-inlaid two ends of NiCu/SS/Carbon/PPs Ring-RTCC, laminated for 4 layers of CWKF in a thickness of 3 mm. The EMSE of above parameters is about 70 dB in the range of 300 – 1500 MHz and it is around 90 dB in the range of 1.5 – 8.5 GHz. The conductive thermoplastic composites fabricated in this dissertation can be utilized for the anti-impact, electromagnetic shielding materials and conductive parts in vehicles and the housing for computers, electronic instruments, scientific appliances. Keywords : copper wire, nickel coated copper wire, stainless steel wire, rotor twister, ring spinning frame, woven fabric, co-woven-knitted fabric, thermoplastic composite, electromagnetic shielding effectiveness (EMSE), electrostatic discharge decay (ESD), tensile strength, elongation
WU, XIAO-QUAN y 伍孝全. "The studies of electrically conductive polymer composites". Thesis, 1989. http://ndltd.ncl.edu.tw/handle/33132184878480238307.
Texto completoMoriarty, Gregory P. "Tailoring the Thermoelectric Behavior of Electrically Conductive Polymer Composites". Thesis, 2013. http://hdl.handle.net/1969.1/151038.
Texto completoSousa, Rui César Cardoso de. "Synthesis and characterization of electrically conductive bacterial cellulose-polypyrrole composites using alternative synthesis methods". Master's thesis, 2013. http://hdl.handle.net/1822/28640.
Texto completoAs the era of the nanomaterials draws near, the electrically conductive polymeric materials have been receiving increasing attention towards the development of diverse applications in electronics, sensors and actuators. Among these materials, the intrinsic conductive polymers (ICPs) stand out, namely polypyrrole (PPy), an inexpensive and highly conductive ICP (up to 500 S.m-1) of facile synthesis, environmentally stability and biocompatibility. By its turn, bacterial cellulose (BC), a biopolymer with highly versatile characteristics, namely chemical purity (0% pectins and hemicelluloses), high crystallinity (95%), low density (1.25 g cm-3), high surface area (37 m2g-1) as well as excellent mechanical properties (Young’s modulus of approx. 15-35 GPa) and low-cost production, have also been drawing a lot of attention. With a combination of these material’s promising characteristics in sight, the aim of this work was to obtain electrically conductive BC-PPy composites via in situ polymerization. This was achieved by using wet chemical polymerization method. Never-dried and freeze-dried BC thin films were used as the templates for monomer deposition and polymerization. Additionally, an adaptation of the chemical vapour deposition synthesis method was also implemented and tested. The effect of freezedrying towards the conductivity of the composites was also assessed as it showed promise attending to some published results where the composites are freeze-dried. Electrically conductive BC-PPy composites exhibiting tailor-made conductivity, which varied depending on the synthesis method selected, were obtained. These conductivities vary between the ranges of 3x10-5 and 5x10-5 S.m-1 (CVD) and 3-140 S.m-1 (WCP), depending on processing method. Additionally, the composites were characterized, alongside the BC and PPy, using a different set of analytical techniques such as conductivity assays, tensile testing, thermogravimetric analyses (TGA), Fourier transform infrared spectroscopy by attenuated reflectance (FTIR-ATR), X-ray diffraction crystallography (XRD) and scanning electron microscopy (SEM). This characterization lead to the conclusion that the BC fibres not only were completely coated by a PPy layer but that a chemical interaction between them also exist.
Dada a crescente popularidade dos nanomateriais, os materiais poliméricos electricamente condutores sido alvo de atenção crescente no contexto do desenvolvimento de diversas aplicações no ramo da electrónica, dos sensores e actuadores. Destes materiais, destacam-se os polímeros intrinsecamente condutores (PIC), nomeadamente o polipirrol (PPy), um PIC low cost, altamente condutor (≤500 Sm- 1), de síntese fácil, e altamente estável no ambiente bem como biocompatível. A celulose bacteriana (CB), um biopolímero com características altamente versáteis, nomeadamente a sua pureza química (0% pectinas e hemiceluloses), elevada cristalinidade (95%), baixa densidade (1,25 g.cm-3), grande área superficial (37 m2.g -1), bem como excelentes propriedades mecânicas (módulo de Young de ~15-35 GPa) e produção de baixo custo, também tem demonstrado uma crescente popularidade. Com a combinação das características promissoras destes materiais em vista, este trabalho visou obter compósitos electricamente conductores de CB-PPy via polimerização in situ. Para este fim, para além do método tradicional de polimerização química em solução (PQS), uma adaptação desta técnica foi testada, tendo-se usado BC liofilizada alternativamente à hidratada. Paralelamente, também foi testada adaptação do método de síntese por deposição química de vapor (DQV). O efeito da liofilização na condutividade dos compósitos também foi avaliado, visto que se revelou promissor dado alguns resultados encontrados na literatura em que há liofilização dos compósitos. Foram obtidos compósitos porosos e não-porosos de BC-PPy com conductividade tailor-made, i.e., variável (3x10-5 a 5x10-5 S.m-1 (DQV) e 3-140 S.m-1 (PQS)) consoante o método de síntese utilizado. Finalmente, os compósitos foram caracterizados, conjuntamente com a CB e o PPy, usando um conjunto de diferentes de técnicas analíticas tais como ensaios de condutividade elétrica, ensaios mecânicos, análise termogravimétrica, espectroscopia de infravermelho por reflectância atenuada, cristalografia por diffracção de raios-X e microscopia eletrônica de varrimento. Esta caracterização permitiu concluir que ocorre o revestimento total das fibras de CB pelo PPy, bem como existe uma interacção química entre a CB e o PPy.
Fei, G., Cristina-Luminita Tuinea-Bobe, Dongxu Li, G. Li, Benjamin R. Whiteside, Philip D. Coates y H. Xia. "Electro-activated surface micropattern tuning for microinjection molded electrically conductive shape memory polyurethane composites". 2013. http://hdl.handle.net/10454/9654.
Texto completoShape memory polymers with surface micropatterns have seen rising demand for high value applications such as adjustable adherence surfaces, dynamic micro-geometries for cell culture studies and switchable information carriers. Recently, microinjection molding has emerged as an efficient way to manufacture devices which contain surface micro-features using a wide range of polymers with high accuracy. In this study, shape memory polyurethane-carbon nanotube composites were prepared by twin-screw melt extrusion and subsequently processed using microinjection molding to obtain components with surface micropatterns. Then an electro-activated surface micropattern tuning system was developed which could recover the original micropatterned surface of the components after a thermal deformation by applying a current which heats the component using resistive heating. In order to optimize the technique, three key areas were investigated in this work: conductivity of the microinjection molded microparts, the retention of shape memory micropatterns on the surface of microparts during annealing treatment, and the macroscopic area shrinkage of microparts after thermal treatment. It has been found that the electrical conductivity of microinjection molded parts is relatively low due to the high shear rates prevalent in the process. An annealing treatment improves the electrical conductivity by several orders of magnitude, but can be detrimental to the dimensional stability of the micropatterns, which depends significantly on the micro-injection molding parameters, especially the mold temperature. Increasing the mold temperature, melt temperature, injection speed and injection pressure result in better retention of the micropattern and improved dimension stability during annealing treatment. This work demonstrates the potential of electro-activated surface micropattern control for microinjection molded electrically conductive shape memory polymer composites, which could be a promising technology for a range of application areas including electro-adjustable adherence, information storage, and anti-counterfeiting technology.
Wu, Chien-hung y 吳建宏. "Studies on the Preparation and Properties of the Electrically Conductive PE/PP/Carbon Black Composites". Thesis, 2004. http://ndltd.ncl.edu.tw/handle/71173784066312655717.
Texto completo淡江大學
化學工程與材料工程學系碩士班
94
In this study, we aimed at blending varies polyethylene(PE) and polypropylene(PP) with carbon black(CB) by melt mixing to manufacture electrically conductive polymer composites. We used the surface resistance meter to measured surface resistance coefficient, and scanning electron microscopy(SEM) to investigate the morphology of polymer composites and the dispersion of carbon black in the polymer matrix. Thermal degradation behavior and dynamics mechanical properties of polymer composites were analyzed by thermal gravimetric analysis(TGA) and dynamics mechanical analysis(DMA), the degree of crystallization and melt temperature(Tm) of the blends were observed by differential scanning calorimetry(DSC). The results indicated in PE/PP/CB composites, the CB was dispersed in PE, and the existence of PP helps CB dispersed in PE and the formation of CB conductive networks. CB networks will improves thermal stability and mechanical properties of polymer composites. The rheological properties were measured by plate-plate rheometer.
Alonso, Pedro Emanuel de Gouveia. "Alternative synthesis methods of electrically conductive bacterial cellulose-polyaniline composites for potential drug delivery application". Master's thesis, 2017. http://hdl.handle.net/10400.13/1640.
Texto completoOs nanocompósitos de celulose bacteriana/polianilina (CB / PANi) têm recebido nos últimos tempos um grande interesse por parte da comunidade científica para o desenvolvimento de aplicações eletrónicas. Este trabalho tem como objetivo determinar o método de modificação mais adequado da CB para a obtenção de uma membrana eficaz na libertação de fármacos através de estímulo elétrico. Assim sendo, os nanocompósitos CB/PANi foram sintetizados utilizando diferentes matrizes de CB (drenada, liofilizada e regenerada) bem como através de diferentes métodos de polimerização (in situ e ex situ). Antes da modificação, foram estudados os efeitos tanto do método de secagem (liofilização e secagem no forno) como também o processo de regeneração na estrutura da CB. O processo liofilização levou à preservação da estrutura tridimensional, obtendo assim um material mais poroso. Por outro lado, a CB regenerada apresentou uma superfície compacta devido à incapacidade de reorganizar-se em fibrilas durante o processo de regeneração. Desta forma, a CB liofilizada aparenta ser a matriz mais adequada para modificação. Contudo, relativamente aos diferentes nanocompósitos obtidos, para se obter uma membrana com elevada condutividade, o método mais adequado é a polimerização in situ na CB drenada. A introdução de PANi na CB obstruiu os poros, levando à formação de um material mais compacto e rugoso. Também foi observado uma diminuição na estabilidade térmica bem como uma diminuição na cristalinidade da CB. A sulfacetamida de sódio foi incorporada nos nanocompósitos para avaliar a atividade antimicrobiana onde, sem estímulo elétrico, apenas o nanocompósito in situ com CB drenada apresentou um efeito inibitório sobre o crescimento de Escherichia coli (E. coli) (13%). Através da aplicação de estímulo elétrico sobre esta membrana, a inibição no crescimento de E. coli é potenciado (20%). Assim sendo, a polimerização in situ da anilina numa membrana drenada mostrou ser eficaz na libertação do fármaco por estímulo elétrico.
LIN, ZONG-SYUN y 林宗勳. "Preparations and Applications of Conductive Rubber Composites by Using Carbon Nanomaterials and Styrenic Thermoplastic Elastomers". Thesis, 2018. http://ndltd.ncl.edu.tw/handle/f65w5p.
Texto completo國立中正大學
化學工程研究所
106
There are three topics in this study. The first research is about carbon nanotubes and styrene-isoprene-styrene block copolymer, making a conductive film by simple ways, it’s applied to electromagnetic shielding. Both increasing the carbon nanotubes loading or the thickness lead to the improvement of electromagnetic interference shielding effectiveness (EMI SE). The best EMI SE we had measured is 23.6 dB from 18 wt% SIS/CNT and its resistivity is 2.26×10-3 Ω-m. In another part, we improved the process of the first research. After comparing some organic solvent, we chose ethyl acetate. We filled SIS/CNT in an aerosol spray can, and it would be a potential product which is low cost and environmentally friendly. Moreover, we tested the proportion of ethanol and acetic acid to reduce the cost. The second research is about preparing a spirally structured sensor by using graphene and SIS. We made low loading (0.5 wt%) to high loading (30 wt%), and its resistivity could change in six order of magnitude. Sticking on human’s face, it can be sensed small motion by blinking, changing expression and smiling. Sticking on human’s throat, it can be sensed by swallowing and pronouncing, even you don’t really pronounce still can be sensed. In the third research, we investigated different mechanical strength and electrical properties of styrenic thermoplastic elastomers (TPE-s). We also compared those properties that mixing CNT to the elastomer. The elastomer which we experimented includes SIS, styrene-butadiene-styrene block copolymer (SBS) and styrene-ethylene-butylene-styrene block copolymer (SEBS). We applied these composite materials to sense pronouncing and finger bending. Keywords : carbon nanotube, styrenic block copolymer, electromagnetic interference shielding, graphene, sensor.
Chueh, Ti-Chiang y 闕帝強. "Carbon-Coated Silicon Nano-Composites as Negative Electrodes for Lithium Batteries and Electrically Conductive Adhesives Containing Ag-Plated Graphite Particles". Thesis, 2014. http://ndltd.ncl.edu.tw/handle/31738380325406704753.
Texto completo國立臺灣大學
化學工程學研究所
103
This thesis study contains two parts. The first part is carbon-coated silicon nano-composites as negative electrodes for lithium-ion batteries. The second part is electrically conductive adhesives (ECAs) containing Ag-plated graphite particles. An effective method to produce carbon-coated silicon nano-composites as a high-capacity anode material for rechargeable lithium-ion batteries has been investigated. Initially, silicon particles mixed in different carbon precursor solutions via ultrasonication were prepared by thermal treatment in inert gas at elevated temperature (600 - 1000 oC) to form a homogeneous carbon-coated layer onto the surface of the silicon nanoparticles. The effects of the processing temperature, the duration of thermal treatment, silicon particle size, and the mass ratio of carbon precursor to silicon were investigated in detail. All of these parameters significantly influence the cyclic charge/discharge performance of the carbon-coated Si nanocomposites. Carbon-coated Si nano-composites by using honey as carbon precursor in Argon gas at 1000 oC showed the better cycling performance, with a capacity loss of less than 0.42 % per cycle and retaining a specific capacity of 2355 mAh/g beyond 51 cycles, which is much better than the graphite anode. Furthermore, the capacity fading and lithiation mechanisms of silicon and carbon-coated silicon particles also been measured and studied by cycling tests. The dimensional stability of the Si nanoparticles provided by the carbon nano-coating enhances the electric contact of silicon particles and it seems to be the leading reason for this better improved electrochemical performance. Besides, the conductivities of electrically conductive adhesives (ECAs) containing silver-coated graphite particles by self-activated deposition has been investigated. A novel silver self-activated electroless deposition on graphite designed as conductive filler were employed, and a uniform silver coating with minimal agglomeration on graphite surface was obtained. Furthermore, the electrical resistivity of electrical conductive adhesives containing silver-plated graphite powders have also been investigated in this study. The best result of the electrical resistivity of epoxy-based conductive adhesives obtained is 5.16 × 10-4 Ω-cm for 60 wt% of silver-plated graphite powders. The weight percentage of silver in this epoxy-based adhesive is reduced to 56.6 wt%, which is much less than that of the regular silver conductive adhesives.