Literatura académica sobre el tema "Electric power consumption"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Electric power consumption".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Electric power consumption"
Milivoj Mandić, Ivo Uglešić y Viktor Milardić. "ELECTRIC RAILWAY POWER CONSUMPTION". Journal of Energy - Energija 58, n.º 4 (16 de septiembre de 2022): 384–407. http://dx.doi.org/10.37798/2009584306.
Texto completoHan, Oakyoung y Jaehyoun Kim. "Uncertainty Analysis on Electric Power Consumption". Computers, Materials & Continua 68, n.º 2 (2021): 2621–32. http://dx.doi.org/10.32604/cmc.2021.014665.
Texto completoSablin, O. I. "THE ADDITIONAL PULSATION POWER LOSS IN POWER CHAINS OF XPS DC". Science and Transport Progress, n.º 18 (25 de octubre de 2007): 38–40. http://dx.doi.org/10.15802/stp2007/17437.
Texto completoNaumov, I. V., D. N. Karamov, A. N. Tretyakov, M. A. Yakupova y E. S. Fedorinova. "Asymmetric power consumption in rural electric networks". IOP Conference Series: Earth and Environmental Science 677, n.º 3 (1 de marzo de 2021): 032088. http://dx.doi.org/10.1088/1755-1315/677/3/032088.
Texto completoBeliaeva, Nataliia, Anton Petrochenkov y Korinna Bade. "Data Set Analysis of Electric Power Consumption". European Researcher 61, n.º 10-2 (15 de septiembre de 2013): 2482–87. http://dx.doi.org/10.13187/er.2013.61.2482.
Texto completoN’Zué, Felix Fofana. "Is There a Relationship between CO2 Emissions by Sources, Electricity Consumption and Economic Growth in Côte d’Ivoire? Evidence from an ARDL Investigation". International Journal of Economics and Finance 14, n.º 7 (25 de junio de 2022): 28. http://dx.doi.org/10.5539/ijef.v14n7p28.
Texto completoKarpenko, Sergey y Nadezhda Karpenko. "Analysis and modeling of regional electric power consumption subject to influence of external factors". Energy Safety and Energy Economy 3 (junio de 2021): 12–17. http://dx.doi.org/10.18635/2071-2219-2021-3-12-17.
Texto completoMacheso, Paul Stone y Doreen Thotho. "ESP32 Based Electric Energy Consumption Meter". International Journal of Computer Communication and Informatics 4, n.º 1 (9 de mayo de 2022): 23–35. http://dx.doi.org/10.34256/ijcci2213.
Texto completoHasan, Maha Yousif y Dheyaa Jasim Kadhim. "A new smart approach of an efficient energy consumption management by using a machine-learning technique". Indonesian Journal of Electrical Engineering and Computer Science 25, n.º 1 (1 de enero de 2022): 68. http://dx.doi.org/10.11591/ijeecs.v25.i1.pp68-78.
Texto completoPark, EungSuk, BoRam Kim, SooHyun Park y Daecheol Kim. "Analysis of the Effects of the Home Energy Management System from an Open Innovation Perspective". Journal of Open Innovation: Technology, Market, and Complexity 4, n.º 3 (3 de agosto de 2018): 31. http://dx.doi.org/10.3390/joitmc4030031.
Texto completoTesis sobre el tema "Electric power consumption"
Mangisa, Siphumlile. "Statistical analysis of electricity demand profiles". Thesis, Nelson Mandela Metropolitan University, 2013. http://hdl.handle.net/10948/d1011548.
Texto completoModlin, Danny Robert. "Utilizing time series analysis to forecast long-term electrical consumption /". Electronic version (PDF), 2006. http://dl.uncw.edu/etd/2006/modlind/dannymodlin.pdf.
Texto completoHuss, William Reed. "Load forecasting for electric utilities /". The Ohio State University, 1985. http://rave.ohiolink.edu/etdc/view?acc_num=osu1487263399023837.
Texto completoLai, Chiu-cheong. "Electricity use and its conservation potential in the commercial sector : a case study in Hong Kong /". [Hong Kong : University of Hong Kong], 1993. http://sunzi.lib.hku.hk/hkuto/record.jsp?B13498423.
Texto completoSi, Yau-li. "Forecasts of electricity demand and their implication for energy developments in Hong Kong". [Hong Kong : University of Hong Kong], 1990. http://sunzi.lib.hku.hk/hkuto/record.jsp?B13009102.
Texto completoChawdhry, P. K. "Identification of boiler-turbine systems in electric power stations". Thesis, Queen's University Belfast, 1985. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.372987.
Texto completoChiu, Yuk Ha. "A cross-country empirical study on electricity demand /". View abstract or full-text, 2004. http://library.ust.hk/cgi/db/thesis.pl?ECON%202004%20CHIU.
Texto completoIncludes bibliographical references (leaves 33-35). Also available in electronic version. Access restricted to campus users.
Gopalakrishnan, Chandra. "Effectiveness of electrical demand reduction strategies". Morgantown, W. Va. : [West Virginia University Libraries], 2004. https://etd.wvu.edu/etd/controller.jsp?moduleName=documentdata&jsp%5FetdId=3776.
Texto completoTitle from document title page. Document formatted into pages; contains viii, 75 p. : ill. (some col.). Includes abstract. Includes bibliographical references (p. 74-75).
Doorduin, Riaan. "Electricity theft detection on a low voltage reticulation environment". Thesis, Stellenbosch : University of Stellenbosch, 2004. http://hdl.handle.net/10019.1/16310.
Texto completoENGLISH ABSTRACT: Electricity theft in South Africa has become a major problem. This led to several developments from both industries and research institutes to counter these actions. Since equipment is already installed and major capital has been invested to provide electricity for a broad spectrum of consumers, the challenge is to find a low cost solution harnessing current investments and technology to detect electricity theft more accurately. This thesis investigates into the electricity theft topic. Two different methods, Time Domain Pulse Reflectometry and a data driven platform based on the Theory of Constraints philosophy, were investigated to provide means to detect and determine the impact of illegal electricity usage. Both methods required detailed designs to conduct preliminary proof of concept tests in a laboratory environment. These methods are evaluated against their economical viability, possible practical implications and applications. This thesis presents a practical approach to electricity theft detection and provides the basic tools for management of this ever-increasing problem.
AFRIKAANSE OPSOMMING: Suid Afrika se elektrisiteit diefstal statistiek het die afgelope jare skrikwekkend gegroei. Dit het die industrie genoop om baie meer navorsing in die area te doen. Met reeds gevestigde toerusting en tegnologie om di´e energie medium so effektief moontlik te versprei, is die uitdaging juis om ’n ekonomiese oplossing te vind om reeds beskikbare tegnologie¨e meer doeltreffend aan te wend. Die doel van die tesis is om die gebied van elektrisiteit diefstal na te vors. Twee verskillende metodes is ondersoek, naamlik Tydgebied-pulse-reflektometrie en ’n informasie gebaseerde stelsel wat op die Randvoorwaarde Teorie gebaseer is, om effektief die omvang van elektrisiteit diefstal in ’n mikro, asook makro omgewing te bepaal. Die twee metodes is in ’n beheerde omgewing getoets sodat die konsepte wat ontwikkel is bewys kon word. Die metodes is ge-evalueer in terme van die ekonomiese lewensvatbaarheid daarvan met inagneming van die praktiese implikasies. Die tesis bied bestuur die nodige kennis om elektrisiteit diefstal in die praktyk doeltreffend die hok mee te slaan.
Sarris, Emmanouil. "Naval ship propulsion and electric power systems selection for optimal fuel consumption". Thesis, Massachusetts Institute of Technology, 2011. http://hdl.handle.net/1721.1/68573.
Texto completoCataloged from PDF version of thesis.
Includes bibliographical references (p. [100]-102).
Although propulsion and electric power systems selection is an important part of naval ship design, respective decisions often have to be made without detailed ship knowledge (resistance, propulsors, etc.). Propulsion and electric power systems have always had to satisfy speed and ship-service power requirements. Nowadays, increasing fuel costs are moving such decisions towards more fuel-efficient solutions. Unlike commercial ships, naval ships operate in a variety of speeds and electric loads, making fuel consumption optimization challenging. This thesis develops a flexible decision support tool in Matlab® environment, which identifies the propulsion and ship-service power generation systems configuration that minimizes fuel consumption for any ship based on its operating profile. Mechanical-driven propulsion systems with or without propulsion derived ship-service power generation, separate ship-service systems and integrated power systems are analyzed. Modeling includes hull resistance using the Holtrop-Mennen method requiring only basic hull geometry information, propeller efficiencies using the Wageningen B series and transmission and prime movers fuel efficiencies. Propulsion and ship-service power generation systems configuration is optimized using the genetic algorithm. US Navy's Advanced Surface Ship Evaluation Tool (ASSET) model for the DDG-51 Flight I destroyer was used for modeling validation. Optimal fuel consumption results are compared against the existing configuration for the DDG-51 Flight I destroyer using a representative operating profile.
by Emmanouil Sarris.
S.M.in Engineering and Management
Nav.E.
Libros sobre el tema "Electric power consumption"
Arthur Andersen & Co., Andersen Consulting y Cambridge Energy Research Associates, eds. European electric power trends. Cambridge, Mass., USA: Cambridge Energy Research Associates, 1991.
Buscar texto completoNational Association of Regulatory Utility Commissioners., ed. Electric power technology. Washington, D.C: National Association of Regulatory Utility Commissioners, 1990.
Buscar texto completoEstomin, Steven. Forecasted electric power demands for the Potomac Electric Power Company. [Annapolis, Md.]: The Program, 1988.
Buscar texto completoMunasinghe, Mohan. Electric power economics: Selected works. London: Butterworths, 1990.
Buscar texto completoGroup, Energy Research, ed. Electric power for industrialisation in developing countries. Place of publication not identified]: [publisher not identified], 1985.
Buscar texto completoStump, Lisa, Parveen Baig y Leslie Cleveland. Facts concerning the consumption and production of electric power in Iowa. Editado por Iowa Utilities Board. Des Moines, Iowa: Iowa Utilities Board, Dept. of Commerce, 2000.
Buscar texto completoAlagh, Yoginder K. Power economics in Gujarat. New Delhi: Har-Anand Publications, 1998.
Buscar texto completoUnited States. Bonneville Power Administration., ed. Puget Sound area electric reliability plan. Portland, Or: The Administration, 1991.
Buscar texto completoWillis, H. Lee. Spatial electric load forecasting. 2a ed. New York: Marcel Dekker, 2002.
Buscar texto completoʻAbduh, Saʻīd Aḥmad. Jughrāfīyat al-ṭāqah al-kahrabāʼīyah fī al-minṭaqah al-janūbīyah bi-al-Mamlakah al-ʻArabīyah al-Saʻūdīyah. [Cairo: s.n.], 1985.
Buscar texto completoCapítulos de libros sobre el tema "Electric power consumption"
Stütz, Sebastian, Andreas Gade y Daniela Kirsch. "Promoting Zero-Emission Urban Logistics: Efficient Use of Electric Trucks Through Intelligent Range Estimation". En iCity. Transformative Research for the Livable, Intelligent, and Sustainable City, 91–102. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-92096-8_8.
Texto completoSeliverstova, Anastasiya V., Darya A. Pavlova, Slavik A. Tonoyan y Yuriy E. Gapanyuk. "The Time Series Forecasting of the Company’s Electric Power Consumption". En Advances in Neural Computation, Machine Learning, and Cognitive Research II, 210–15. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-030-01328-8_24.
Texto completoPanchal, R. y B. Kumar. "Forecasting industrial electric power consumption using regression based predictive model". En Recent Trends in Communication and Electronics, 135–39. London: CRC Press, 2021. http://dx.doi.org/10.1201/9781003193838-26.
Texto completoKovan, Ibrahim y Stefan Twieg. "Forecasting the Energy Consumption Impact of Electric Vehicles by Means of Machine Learning Approaches". En Electric Transportation Systems in Smart Power Grids, 43–70. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003293989-3.
Texto completoJing, Feng y Pan Anding. "The Effect of Guangzhou’s Temperature Change to the Electric Power Consumption". En Advances in Intelligent and Soft Computing, 439–44. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-25349-2_58.
Texto completoIstomin, Stanislav y Maxim Bobrov. "The Organization of Adaptive Control, Forecasting and Management of Electric Power Consumption of Electric Rolling Stock". En Lecture Notes in Networks and Systems, 1521–30. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-11058-0_154.
Texto completode Queiroz, Alynne C. S. y José Alfredo F. Costa. "Behavior Pattern Recognition in Electric Power Consumption Series Using Data Mining Tools". En Intelligent Data Engineering and Automated Learning - IDEAL 2012, 522–31. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-32639-4_64.
Texto completoCzachórski, Tadeusz, Erol Gelenbe, Godlove Suila Kuaban y Dariusz Marek. "Optimizing Energy Usage for an Electric Drone". En Communications in Computer and Information Science, 61–75. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-09357-9_6.
Texto completoGoolak, Sergey, Borys Liubarskyi, Svitlana Sapronova, Viktor Tkachenko y Ievgen Riabov. "Determination of the Power Factor of Electric Rolling Stock of Alternating Current Consumption". En TRANSBALTICA XII: Transportation Science and Technology, 243–52. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-94774-3_24.
Texto completoFong, Simon, Meng Yuen, Raymond K. Wong, Wei Song y Kyungeun Cho. "Real-Time Stream Mining Electric Power Consumption Data Using Hoeffding Tree with Shadow Features". En Advanced Data Mining and Applications, 775–87. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-49586-6_56.
Texto completoActas de conferencias sobre el tema "Electric power consumption"
Brandstetter, Pavel, Jan Vanek y Tomas Verner. "Electric vehicle energy consumption monitoring". En 2014 15th International Scientific Conference on Electric Power Engineering (EPE). IEEE, 2014. http://dx.doi.org/10.1109/epe.2014.6839444.
Texto completoCoban, Hasan Huseyin, Mohit Bajaj, Vojtech Blazek, Francisco Jurado y Salah Kamel. "Forecasting Energy Consumption of Electric Vehicles". En 2023 5th Global Power, Energy and Communication Conference (GPECOM). IEEE, 2023. http://dx.doi.org/10.1109/gpecom58364.2023.10175761.
Texto completoKott, M. "The electricity consumption in polish households". En 2015 Modern Electric Power Systems (MEPS). IEEE, 2015. http://dx.doi.org/10.1109/meps.2015.7477166.
Texto completoCherkassky, Vladimir, Sohini Roy Chowdhury, Volker Landenberger, Saurabh Tewari y Paul Bursch. "Prediction of electric power consumption for commercial buildings". En 2011 International Joint Conference on Neural Networks (IJCNN 2011 - San Jose). IEEE, 2011. http://dx.doi.org/10.1109/ijcnn.2011.6033285.
Texto completoHobby, John D. "Constructing Demand Response Models for Electric Power Consumption". En 2010 1st IEEE International Conference on Smart Grid Communications (SmartGridComm). IEEE, 2010. http://dx.doi.org/10.1109/smartgrid.2010.5622075.
Texto completoMurata, H. y T. Onoda. "Estimation of power consumption for household electric appliances". En 9th International Conference on Neural Information Processing. IEEE, 2002. http://dx.doi.org/10.1109/iconip.2002.1201903.
Texto completoVitaliy, Kuznetsov, Tryputen Nikolay y Kuznetsova Yevheniia. "Evaluating the Effect of Electric Power Quality upon the Efficiency of Electric Power Consumption". En 2019 IEEE 2nd Ukraine Conference on Electrical and Computer Engineering (UKRCON). IEEE, 2019. http://dx.doi.org/10.1109/ukrcon.2019.8879841.
Texto completoJiang, Jingfei, Bo Bao, Fanzhuo Meng, Yifan Ma, Hui Zhang, Yucheng Jin, Fengwen Pan y Xinmei Yuan. "Probabilistic Energy Consumption Estimation for Electric Buses". En 2022 4th International Conference on Smart Power & Internet Energy Systems (SPIES). IEEE, 2022. http://dx.doi.org/10.1109/spies55999.2022.10082616.
Texto completoZihan, Wang, Shao Enze, Wang Can, Xu Xiao, Du Xianbo, Zhong Chunlin, Zou Lei, Chen GuoLin y Fang Chao. "LSTM-Based Method for Electric Consumption Outlier Detection". En 2021 IEEE Sustainable Power and Energy Conference (iSPEC). IEEE, 2021. http://dx.doi.org/10.1109/ispec53008.2021.9735594.
Texto completoDamianakis, Nikolaos, Gautham Chandra Ram Mouli y Pavol Bauer. "Risk-averse Estimation of Electric Heat Pump Power Consumption". En 2023 IEEE 17th International Conference on Compatibility, Power Electronics and Power Engineering (CPE-POWERENG). IEEE, 2023. http://dx.doi.org/10.1109/cpe-powereng58103.2023.10227424.
Texto completoInformes sobre el tema "Electric power consumption"
Boero, Riccardo. Electric Power Consumption Coefficients for U.S. Industries: Regional Estimation and Analysis. Office of Scientific and Technical Information (OSTI), julio de 2017. http://dx.doi.org/10.2172/1372806.
Texto completoMai, Trieu T., Paige Jadun, Jeffrey S. Logan, Colin A. McMillan, Matteo Muratori, Daniel C. Steinberg, Laura J. Vimmerstedt, Benjamin Haley, Ryan Jones y Brent Nelson. Electrification Futures Study: Scenarios of Electric Technology Adoption and Power Consumption for the United States. Office of Scientific and Technical Information (OSTI), junio de 2018. http://dx.doi.org/10.2172/1459351.
Texto completoLi, Yan, Yuhao Luo y Xin Lu. PHEV Energy Management Optimization Based on Multi-Island Genetic Algorithm. SAE International, marzo de 2022. http://dx.doi.org/10.4271/2022-01-0739.
Texto completoDhammi, Rimmi, Marcus Jones, Shweta Varadarajan, Conor Baverstock, Steve Chege y James Zihni. ACA105 Motorcade - Analysis toolkit for monitoring trials of zero emission vehicles. TRL, enero de 2024. http://dx.doi.org/10.58446/omcq1828.
Texto completoPenetrante, B. M., M. C. Hsiao y J. N. Bardsley. Power consumption and byproducts in electron beam and electrical discharge processing of volatile organic compounds. Office of Scientific and Technical Information (OSTI), febrero de 1996. http://dx.doi.org/10.2172/231371.
Texto completoHaddad, J., L. A. Horta Nogueira, Germano Lambert-Torres y L. E. Borges da Silva. Energy Efficiency and Smart Grids for Low Carbon and Green Growth in Brazil: Knowledge Sharing Forum on Development Experiences: Comparative Experiences of Korea and Latin America and the Caribbean. Inter-American Development Bank, junio de 2015. http://dx.doi.org/10.18235/0007001.
Texto completoGolovacheva, Larissa. Integration modules for electronic systems. Intellectual Archive, abril de 2024. http://dx.doi.org/10.32370/iaj.3067.
Texto completoGummow. L51908 AC Grounding Effects on Cathodic Protection Performance in Pipeline Stations.pdf. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), diciembre de 2001. http://dx.doi.org/10.55274/r0010269.
Texto completoHall y Brown. PR-343-14607-R01 Miniaturized Gas Chromatography and Gas Quality Sensor. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), febrero de 2015. http://dx.doi.org/10.55274/r0010558.
Texto completoComparative Analysis on Fuel Consumption Between Two Online Strategies for P2 Hybrid Electric Vehicles: Adaptive-RuleBased (A-RB) vs Adaptive-Equivalent Consumption Minimization Strategy (A-ECMS). SAE International, marzo de 2022. http://dx.doi.org/10.4271/2022-01-0740.
Texto completo