Literatura académica sobre el tema "Eigentensor"

Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros

Elija tipo de fuente:

Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Eigentensor".

Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.

También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.

Artículos de revistas sobre el tema "Eigentensor"

1

Nikabadze, M. U. "Construction of eigentensor columns in the linear micropolar theory of elasticity". Moscow University Mechanics Bulletin 69, n.º 1 (enero de 2014): 1–9. http://dx.doi.org/10.3103/s0027133014010014.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Nikabadze, M. U. "On the eigenvalue and eigentensor problem for a tensor of even rank". Mechanics of Solids 43, n.º 4 (agosto de 2008): 586–99. http://dx.doi.org/10.3103/s0025654408040079.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

MARTÍNEZ-MORALES, JOSÉ L. "THE MASTER EQUATIONS IN THE EUCLIDEAN SCHWARZSCHILD–TANGHERLINI METRIC OF A SMALL STATIC PERTURBATION". International Journal of Modern Physics A 22, n.º 06 (10 de marzo de 2007): 1239–64. http://dx.doi.org/10.1142/s0217751x07036208.

Texto completo
Resumen
The master equations in the Euclidean Schwarzschild–Tangherlini space–time of a small static perturbation are studied. For each harmonic mode on the sphere there are two solutions that behave differently at infinity. One solution goes like the power 2-l-n of the radial variable, the other solution goes like the power l. These solutions occur in power series. The second main statement of the paper is that any eigentensor of the Lichnerowicz operator in a Euclidean Schwarzschild space–time with an eigenvalue different from zero is essentially singular at infinity. Possible applications of the stability of instantons are discussed. We present the analysis of a small static perturbation of the Euclidean Schwarzschild–Tangherlini metric tensor. The higher order perturbations will appear later. We determine independently the static perturbations of the Schwarzschild quantum black hole in dimension 1+n≥4, where the system of equations is reduced to master equations — ordinary differential equations. The solutions are hypergeometric functions which in some cases can be reduced to polynomials. In the same Schwarzschild background, we analyze static perturbations of the scalar mode and show that there does not exist any static perturbation that is regular everywhere outside the event horizon and is well-behaved at the spatial infinity. This confirms the uniqueness of the spherically symmetric static empty quantum black hole, within the perturbation framework. Our strategy for treating the stability problem is also applicable to other symmetric quantum black holes with a nonzero cosmological constant.
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Douglas, Stephen R. "Letter: Eigentensors of the Bel Tensor". General Relativity and Gravitation 31, n.º 10 (octubre de 1999): 1605–7. http://dx.doi.org/10.1023/a:1026738622165.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

MEHRABADI, MORTEZA M. y STEPHEN C. COWIN. "EIGENTENSORS OF LINEAR ANISOTROPIC ELASTIC MATERIALS". Quarterly Journal of Mechanics and Applied Mathematics 43, n.º 1 (1990): 15–41. http://dx.doi.org/10.1093/qjmam/43.1.15.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

MEHRABADI, MORTEZA M. y STEPHEN C. COWIN. "EIGENTENSORS OF LINEAR ANISOTROPIC ELASTIC MATERIALS". Quarterly Journal of Mechanics and Applied Mathematics 44, n.º 2 (1991): 331. http://dx.doi.org/10.1093/qjmam/44.2.331.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Theocaris, Pericles S. y Dimitrios P. Sokolis. "Spectral decomposition of the linear elastic tensor for monoclinic symmetry". Acta Crystallographica Section A Foundations of Crystallography 55, n.º 4 (1 de julio de 1999): 635–47. http://dx.doi.org/10.1107/s0108767398016766.

Texto completo
Resumen
The compliance fourth-rank tensor related to crystalline or other anisotropic media belonging to the monoclinic crystal system is spectrally decomposed for the first time, and its characteristic values and idempotent fourth-rank tensors are established. Further, it is proven that the idempotent tensors resolve the stress and strain second-rank tensors into eigentensors, thus giving rise to a decomposition of the total elastic strain-energy density into non-interacting strain-energy parts. Several examples of representative inorganic crystals of the monoclinic system illustrate the results of the theoretical analysis. It is also proven that the essential parameters required for a coordinate-invariant characterization of the elastic properties of a crystal exhibiting monoclinic symmetry are both the six characteristic values of the compliance tensor and seven dimensionless parameters. These material constants, referred to as the eigenangles, are shown to be accountable for the orientation of the stress and strain eigentensors, when represented in a stress coordinate system. Finally, the restrictions dictated by the classical thermodynamical argument on the elements of the compliance tensor, which are necessary and sufficient for the elastic strain-energy density to be positive definite, are investigated for the monoclinic symmetry.
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Martínez-Morales, J. L. "Eigentensors of the Lichnerowicz operator in Euclidean Schwarzschild metrics". Annalen der Physik 15, n.º 9 (1 de septiembre de 2006): 653–62. http://dx.doi.org/10.1002/andp.200510184.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

François, Marc L. M. "A damage model based on Kelvin eigentensors and Curie principle". Mechanics of Materials 44 (enero de 2012): 23–34. http://dx.doi.org/10.1016/j.mechmat.2011.07.017.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Martínez‐Morales, J. L. "Eigentensors of the Lichnerowicz operator in Euclidean Schwarzschild metrics *". Annalen der Physik 518, n.º 9 (24 de julio de 2006): 653–62. http://dx.doi.org/10.1002/andp.20065180903.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.

Tesis sobre el tema "Eigentensor"

1

Turatti, Ettore Teixeira. "Singular vector tuples and their geometry". Doctoral thesis, 2022. https://hdl.handle.net/2158/1291204.

Texto completo
Resumen
The main topic of this thesis is the geometry of singular vector tuples of tensors. Singular vector tuples are a generalization of singular pairs of matrices to higher-order tensors. The singular vector tuples of a tensor T consist of the critical points of the function d(T, X) that measures the distance between the tensor T and the Segre-Veronese variety X, where the distance is the one defined by the Bombieri-Weyl product on the tensor space. The main question of this work is to answer the question: are tensors determined by their singular vector tuples? For partially symmetric tensors the answer is positive if some degree is odd. On the other hand, if all degrees are even there exists a one-dimensional family of tensors with the same singular vector tuples. Another important fact of the geometry of singular vector tuples is that the tensor T itself is a linear combination of them when the dual variety of the Segre-Veronese variety is non-defective, however, when such condition is disregarded the answer is not known. Utilizing cohomological techniques, together with symbolical computation in Macaulay2, we show that this property remains true in the first examples where the dual of the Segre-Veronese variety is defective.
Los estilos APA, Harvard, Vancouver, ISO, etc.

Capítulos de libros sobre el tema "Eigentensor"

1

Lipson, Hod y Hava T. Siegelmann. "High Order Eigentensors as Symbolic Rules in Competitive Learning". En Lecture Notes in Computer Science, 286–97. Berlin, Heidelberg: Springer Berlin Heidelberg, 2000. http://dx.doi.org/10.1007/10719871_20.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

"Eigentensors of the elastic tensor and their relationship with material symmetry". En Handbook of Geophysical Exploration: Seismic Exploration, 393–470. Elsevier, 1994. http://dx.doi.org/10.1016/s0950-1401(13)70031-4.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
Ofrecemos descuentos en todos los planes premium para autores cuyas obras están incluidas en selecciones literarias temáticas. ¡Contáctenos para obtener un código promocional único!

Pasar a la bibliografía