Índice
Literatura académica sobre el tema "Écoulement (hydrologie) – Laos"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Écoulement (hydrologie) – Laos".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Écoulement (hydrologie) – Laos"
Nasri, S., J. M. Lamachère y J. Albergel. "Impact des banquettes sur le ruissellement d'un petit bassin versant". Revue des sciences de l'eau 17, n.º 2 (12 de abril de 2005): 265–89. http://dx.doi.org/10.7202/705534ar.
Texto completoTesis sobre el tema "Écoulement (hydrologie) – Laos"
Song, Layheang. "Usage des terres, ruissellement de surface, érosion des sols : analyse multi-échelles de l'impact des plantations de teck dans un agro-écosystème montagneux tropical humide". Electronic Thesis or Diss., Toulouse 3, 2021. http://www.theses.fr/2021TOU30188.
Texto completoSoil erosion is yet known as one of the most concerning problems of the environment in the world. Soil erosion is particularly and increasingly driven by anthropogenic activities under the changing climate. In Lao PDR, a tropical country, soil erosion is significantly due to inappropriate land management on the sloping land. The Houay Pano, a cultivated catchment of the northern Lao PDR, is prone to soil erosion, particularly after the conversion from shifting cultivation to teak tree plantation. Land mismanagement by clearing the understory under the teak tree plantation is considered as an underlying cause of higher runoff coefficient (Rc) and soil erosion. Some mitigations such as understory and riparian vegetation are suggested for alleviating soil erosion. However, the mitigation measure of soil erosion and the effect of land use management on surface runoff (SR) and soil loss/sediment yield (Sl) on multiple scales in the teak tree plantation are not fully assessed. In this context, we hypothesize that understory and riparian grass mitigate the soil erosion in the teak tree plantation and that teak tree plantation impacts on SR and Sl driven by dominant processes (inter rill erosion, linear erosion, and deposition) on various spatial scales. Therefore, the objectives set out for this work are: (1) to assess the effect of understory management on SR and Sl in the teak tree plantation on the microplot scale; (2) to assess the ability of riparian grass buffers to mitigate SR and Sl, and to assess their water and sediment trapping efficiencies in the teak tree plantations with no understory on the hillslope scale; and (3) to assess the effect of teak tree plantation on SR and Sl on various spatial scales (microplot, hillslope including micro-catchment, and catchment scales) in a mixed land uses mountainous tropical catchment. In this study, Ban Kokngew village and Houay Pano catchment were selected as experimental study areas during the rainy season. Microplots, Gerlach traps, and weirs were used to estimate SR and Sl on each scale. We followed the TEST model developed for inter rill erosion, which requires a few parameters, to assess Sl on the microplot and upscale it to predict Sl on the hillslope and catchment scale. In a study performed in 2017 in the teak tree plantations of Ban Kokngew on the microplot scale, we showed that Rc and Sl (23%, 381 Mg·km-2, respectively) under teak tree with understory were less than those under teak tree with no understory (60% and 5455 Mg·km-2, respectively). Hence, soil erosion mitigation by keeping the understory under teak tree plantation reduces Sl by 14 times. In a study performed in 2014 in the teak tree plantations of Houay Pano on both the microplot and the hillslope scales, we showed that leaving the riparian grass buffer of at least 6 m could limit SR and Sl discharging downstream during small storms (24-hour rainfall < 54.8 mm) with the trapping efficiency up to 88%. Lastly, in a study performed in 2014 in the teak tree plantations of Houay Pano on various scales, we showed that SR and Sl were significantly higher (p-value < 0.05) in the teak-dominated micro-catchment than in the mixed-land-use micro-catchment. SR and Sl decreased from the microplot (122 - 196 mm, 275 - 1065 Mg·km-2, respectively) to the micro-catchment (24 - 188 mm, 95 - 3635 Mg·km-2, respectively) and catchment scale (33 mm, 236 Mg·km-2, respectively), except that Sl in teak tree plantation increased from the microplot (1065 Mg·km-2) to the micro-catchment scale (3635 Mg·km-2). [...]
Patin, Jérémy. "Approches de modélisation pour la partition ruissellement-infiltration à différentes échelles spatiales et temporelles : cas de la parcelle de Thies (Sénégal) et du bassin versant de Houay Pano (Laos)". Thesis, Vandoeuvre-les-Nancy, INPL, 2011. http://www.theses.fr/2011INPL033N/document.
Texto completoThis work deals with distributed modeling of runoff-infiltration processes in a natural environment. The response of complex natural systems is studied from local measurements, numerical investigations and distributed models. Experiments held in Thies, Senegal, on a 40m2 plot show that the heterogeneity of the surface put in the wrong classical friction laws (Manning, Darcy-Weisbach) of runoff models, because they underestimate high velocities. Two laws, taking physically or empirically into account the submersion of rugosity, are tested. In the Houay Pano catchment, we highlight from simulated rainfall experiments on 1m2 plots the effects of heterogeneities, mainly due to soil crusting and vegetation, on the spatially integrated runoff. We observed that the mean infiltration rate is dependent of the rainfall intensity and studied the effects of a statistical distribution of infiltrabilities on permanent and non-permanent infiltration. The exponential distribution of infiltrabilities appeared to be the best suited distribution. It is used to analyze spatial and temporal variability of runoff production in the catchment under natural rainfall, in order to obtain a per land use characterization of infiltration. Eventually, this simple but accurate model at the meter scale is implemented as a base pixel into a runoff-infiltration model at the sub-catchment scale (0.5 ha)
Mekki, Insaf. "Analyse et modélisation de la variabilité des flux hydriques à l'échelle d'un bassin versant cultivé alimentant un lac collinaire du domaine semi-aride méditerranéen (Oued Kamech, Cap Bon, Tunisie)". Montpellier 2, 2003. http://www.theses.fr/2003MON20176.
Texto completoLe, Minh Hoang. "Modélisation multi-échelle et simulation numérique de l’érosion des sols de la parcelle au bassin versant". Thesis, Orléans, 2012. http://www.theses.fr/2012ORLE2059/document.
Texto completoThe overall objective of this thesis is to study a multiscale modelling and to develop a suitable method for the numerical simulation of soil erosion on catchment scale. After reviewing the various existing models, we derive an analytical solution for the non-trivial coupled system modelling the bedload transport. Next, we study the hyperbolicity of the system with different sedimentation laws found in the literature. Relating to the numerical method, we present the validity domain of the time splitting method, consisting in solving separately the Shallow-Water system (modelling the flow routing) during a first time step for a fixed bed and updating afterward the topography on a second step using the Exner equation. On the modelling of transport in suspension at the plot scale, we present a system coupling the mechanisms of infiltration, runoff and transport of several classes of sediment. Numerical implementation and validation tests of a high order wellbalanced finite volume scheme are also presented. Then, we discuss on the model application and calibration using experimental data on ten 1 m2 plots of crusted soil in Niger. In order to achieve the simulation at the catchment scale, we develop a multiscale modelling in which we integrate the inundation ratio in the evolution equations to take into account the small-scale effect of the microtopography. On the numerical method, we study two well-balanced schemes : the first one is the Roe scheme based on a path conservative, and the second one is the scheme using a generalized hydrostatic reconstruction. Finally, we present a first model application with experimental data of the Ganspoel catchment where the parallel computing is also motived
Chiasson-Poirier, Gabriel. "Dynamiques hydrologiques d’un petit bassin versant arctique, rivière Niaqunguk, Iqaluit, Nunavut". Thèse, 2019. http://hdl.handle.net/1866/22504.
Texto completo