Literatura académica sobre el tema "Echo-optimization"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Echo-optimization".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Echo-optimization"
Zhang, Q. "Echo optimization of cardiac resynchronization therapy". International Journal of Cardiology 125 (febrero de 2008): S15. http://dx.doi.org/10.1016/s0167-5273(08)70158-x.
Texto completoJohnson, G. y E. X. Wu. "Sensitivity Optimization of Echo Times and Data Sampling Times for Spin-Echo Spectroscopy". Journal of Magnetic Resonance, Series B 105, n.º 3 (noviembre de 1994): 238–41. http://dx.doi.org/10.1006/jmrb.1994.1130.
Texto completoR., Vincy y J. William. "Optimization of Acoustic Echo and Noise Reduction in Non Stationary Environment". International Journal of Advance Research and Innovation 3, n.º 1 (2015): 104–8. http://dx.doi.org/10.51976/ijari.311519.
Texto completoThiede, Luca Anthony y Ulrich Parlitz. "Gradient based hyperparameter optimization in Echo State Networks". Neural Networks 115 (julio de 2019): 23–29. http://dx.doi.org/10.1016/j.neunet.2019.02.001.
Texto completoGowland, P. A. y R. Bowtell. "Theoretical optimization of multi-echo fMRI data acquisition". Physics in Medicine and Biology 52, n.º 7 (2 de marzo de 2007): 1801–13. http://dx.doi.org/10.1088/0031-9155/52/7/003.
Texto completoVidarsson, Logi, Steven M. Conolly, Kelvin O. Lim, Garry E. Gold y John M. Pauly. "Echo time optimization for linear combination myelin imaging". Magnetic Resonance in Medicine 53, n.º 2 (2005): 398–407. http://dx.doi.org/10.1002/mrm.20360.
Texto completoXue, Yu, Qi Zhang y Adam Slowik. "Automatic topology optimization of echo state network based on particle swarm optimization". Engineering Applications of Artificial Intelligence 117 (enero de 2023): 105574. http://dx.doi.org/10.1016/j.engappai.2022.105574.
Texto completoHu, Haofei, Chongyi Fan y Xiaotao Huang. "Radar Target Detection Based on Waveform Design under Atmospheric Attenuation". Journal of Physics: Conference Series 2290, n.º 1 (1 de junio de 2022): 012071. http://dx.doi.org/10.1088/1742-6596/2290/1/012071.
Texto completoArmenio, Luca Bugliari, Lorenzo Fagiano, Enrico Terzi, Marcello Farina y Riccardo Scattolini. "Optimal Training of Echo State Networks via Scenario Optimization". IFAC-PapersOnLine 53, n.º 2 (2020): 5183–88. http://dx.doi.org/10.1016/j.ifacol.2020.12.1187.
Texto completoLiu, Junxiu, Tiening Sun, Yuling Luo, Su Yang, Yi Cao y Jia Zhai. "Echo state network optimization using binary grey wolf algorithm". Neurocomputing 385 (abril de 2020): 310–18. http://dx.doi.org/10.1016/j.neucom.2019.12.069.
Texto completoTesis sobre el tema "Echo-optimization"
RUEDA, CAMILO VELASCO. "ESNPREDICTOR: TIME SERIES FORECASTING APPLICATION BASED ON ECHO STATE NETWORKS OPTIMIZED BY GENETICS ALGORITHMS AND PARTICLE SWARM OPTIMIZATION". PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 2014. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=24785@1.
Texto completoCOORDENAÇÃO DE APERFEIÇOAMENTO DO PESSOAL DE ENSINO SUPERIOR
CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICO
PROGRAMA DE EXCELENCIA ACADEMICA
A previsão de séries temporais é fundamental na tomada de decisões de curto, médio e longo prazo, em diversas áreas como o setor elétrico, a bolsa de valores, a meteorologia, entre outros. Tem-se na atualidade uma diversidade de técnicas e modelos para realizar essas previsões, mas as ferramentas estatísticas são as mais utilizadas principalmente por apresentarem um maior grau de interpretabilidade. No entanto, as técnicas de inteligência computacional têm sido cada vez mais aplicadas em previsão de séries temporais, destacando-se as Redes Neurais Artificiais (RNA) e os Sistemas de Inferência Fuzzy (SIF). Recentemente foi criado um novo tipo de RNA, denominada Echo State Networks (ESN), as quais diferem das RNA clássicas por apresentarem uma camada escondida com conexões aleatórias, denominada de Reservoir (Reservatório). Este Reservoir é ativado pelas entradas da rede e pelos seus estados anteriores, gerando o efeito de Echo State (Eco), fornecendo assim um dinamismo e um desempenho melhor para tarefas de natureza temporal. Uma dificuldade dessas redes ESN é a presença de diversos parâmetros, tais como Raio Espectral, Tamanho do Reservoir e a Percentual de Conexão, que precisam ser calibrados para que a ESN forneça bons resultados. Portanto, este trabalho tem como principal objetivo o desenvolvimento de uma ferramenta computacional capaz de realizar previsões de séries temporais, baseada nas ESN, com ajuste automático de seus parâmetros por Particle Swarm Optimization (PSO) e Algoritmos Genéticos (GA), facilitando a sua utilização pelo usuário. A ferramenta computacional desenvolvida oferece uma interface gráfica intuitiva e amigável, tanto em termos da modelagem da ESN, quanto em termos de realização de eventuais pré-processamentos na série a ser prevista.
The time series forecasting is critical to decision making in the short, medium and long term in several areas such as electrical, stock market, weather and industry. Today exist different techniques to model this forecast, but statistics are more used, because they have a bigger interpretability, due by the mathematic models created. However, intelligent techniques are being more applied in time series forecasting, where the principal models are the Artificial Neural Networks (ANN) and Fuzzy Inference Systems (FIS). A new type of ANN called Echo State Networks (ESN) was created recently, which differs from the classic ANN in a randomly connected hidden layer called Reservoir. This Reservoir is activated by the network inputs, and the historic of the reservoir activations generating so, the Echo State and giving to the network more dynamism and a better performance in temporal nature tasks. One problem with these networks is the presence of some parameters as, Spectral Radius, Reservoir Size and Connection Percent, which require calibration to make the network provide positive results. Therefore the aim of this work is to develop a computational application capable to do time series forecasting, based on ESN, with automatic parameters adjustment by Particle Swarm Optimization (PSO) and Genetic Algorithms (GA), facilitating its use by the user. The developed computational tool offers an intuitive and friendly interface, both in terms of modeling the ESN, and in terms of achievement of possible pre-process on the series to be forecasted.
Prokudaylo, Sergey. "Calculations for neutron spin echo optimization of the magnetic field geometries and preparations and analysis of experiments on crystal lattice dynamics /". [S.l. : s.n.], 2004. http://deposit.ddb.de/cgi-bin/dokserv?idn=97258840X.
Texto completoAilleres, Norbert. "Etude comparative des séquences d'échos de spins, d'échos stimulés et d'échos de gradients en I. R. M : optimisation du contraste". Toulouse 3, 1992. http://www.theses.fr/1992TOU30254.
Texto completoCharles, Adam Shabti. "Dynamics and correlations in sparse signal acquisition". Diss., Georgia Institute of Technology, 2015. http://hdl.handle.net/1853/53592.
Texto completoLaule, Cornelia. "Optimization of a 48 echo magnetic resonance imaging sequence using variable TR data acquisition". Thesis, 2000. http://hdl.handle.net/2429/11310.
Texto completoDanagoulian, Giovanna Selvaggi. "Quantum mechanical analysis and numerical optimization of a "zero-field" spin echo small angle neutron scattering instrument /". 2007. http://gateway.proquest.com/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqdiss&rft_dat=xri:pqdiss:3301123.
Texto completoSource: Dissertation Abstracts International, Volume: 69-02, Section: B, page: 1301. Adviser: Brent J. Heuser. Includes bibliographical references (leaves 105-106) Available on microfilm from Pro Quest Information and Learning.
Prokudaylo, Sergey [Verfasser]. "Calculations for neutron spin echo : optimization of the magnetic field geometries and preparations and analysis of experiments on crystal lattice dynamics / Sergey Prokudaylo". 2004. http://d-nb.info/97258840X/34.
Texto completoSantanni, Fabio. "Molecular approaches for the optimization of electron spin-based quantum bits and quantum logic gates". Doctoral thesis, 2022. http://hdl.handle.net/2158/1262928.
Texto completoCapítulos de libros sobre el tema "Echo-optimization"
Zhang, Jinwei, Hang Zhang, Chao Li, Pascal Spincemaille, Mert Sabuncu, Thanh D. Nguyen y Yi Wang. "Temporal Feature Fusion with Sampling Pattern Optimization for Multi-echo Gradient Echo Acquisition and Image Reconstruction". En Medical Image Computing and Computer Assisted Intervention – MICCAI 2021, 232–42. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-87231-1_23.
Texto completoWang, Yan, Chao Wang y Jie Li. "The Optimization of Radar Echo Pulse Compression Algorithm Based on DSP". En Lecture Notes in Electrical Engineering, 247–55. Singapore: Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-3229-5_27.
Texto completoPedersen, Peder C. y Li Wan. "Optimization of Pulse-Echo Array Transducer System for Identification of Specified Targets". En Acoustical Imaging, 373–80. Boston, MA: Springer US, 2002. http://dx.doi.org/10.1007/978-1-4419-8606-1_47.
Texto completoSong, Ke. "Optimization of Echo Parameter in Intelligent Instrument Under the Condition of Numerical Stability". En Advances in Intelligent Systems and Computing, 1234–38. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-15235-2_165.
Texto completoAbadlia, I., L. Hassaine, F. Abdoune y A. Beddar. "Energy Management Strategy and Optimization of a MicroGrid System Based on Echo State Networks". En Artificial Intelligence and Renewables Towards an Energy Transition, 168–77. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-63846-7_17.
Texto completoSong, Qingsong, Zuren Feng y Yonggang Wang. "Stable Training Method for Echo State Networks Running in Closed-Loop Based on Particle Swarm Optimization Algorithm". En Neural Information Processing, 253–62. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-10684-2_28.
Texto completoStavroulakis, Georgios E. "Global optimization for crack identification: impact-echo experiments". En Combinatorial and Global Optimization, 317–31. WORLD SCIENTIFIC, 2002. http://dx.doi.org/10.1142/9789812778215_0021.
Texto completo"Joint Optimization of Acoustic Echo Cancellation and Adaptive Beamforming". En Topics in Acoustic Echo and Noise Control, 19–50. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006. http://dx.doi.org/10.1007/3-540-33213-8_2.
Texto completoVieillard-Baron, Antoine. "Haemodynamic assessments in mechanically ventilated patients". En Oxford Textbook of Advanced Critical Care Echocardiography, editado por Anthony McLean, Stephen Huang y Andrew Hilton, 321–26. Oxford University Press, 2020. http://dx.doi.org/10.1093/med/9780198749288.003.0025.
Texto completoBalik, Martin. "Acute respiratory failure". En Oxford Textbook of Advanced Critical Care Echocardiography, editado por Anthony McLean, Stephen Huang y Andrew Hilton, 287–94. Oxford University Press, 2020. http://dx.doi.org/10.1093/med/9780198749288.003.0021.
Texto completoActas de conferencias sobre el tema "Echo-optimization"
Lin, Zhenliang, Qikang Li, Rui Wang, Guobin Li y Jie Luo. "Optimization of Acoustic Noise for Single-Shot Echo-Planar Imaging by Varying Echo Spacing". En ICBBE '20: 2020 7th International Conference on Biomedical and Bioinformatics Engineering. New York, NY, USA: ACM, 2020. http://dx.doi.org/10.1145/3444884.3444895.
Texto completoCai, Mao, Xingming Fan, Chao Wang, Linlin Gao y Xin Zhang. "Research for Parameters Optimization of Echo State Network". En 2018 11th International Symposium on Computational Intelligence and Design (ISCID). IEEE, 2018. http://dx.doi.org/10.1109/iscid.2018.10142.
Texto completoFang, Wenxing y Yiping P. Du. "Optimization of 3D time-of-flight MR angiography with shortened echo time and dual-echo acquisition". En 2013 6th International Conference on Biomedical Engineering and Informatics (BMEI). IEEE, 2013. http://dx.doi.org/10.1109/bmei.2013.6746906.
Texto completoZhang, Zhaozhao, Xiaohui Wang y Yingqin Zhu. "Echo State Network Optimization Based on Improved Fireworks Algorithm". En 2022 7th International Conference on Image, Vision and Computing (ICIVC). IEEE, 2022. http://dx.doi.org/10.1109/icivc55077.2022.9886609.
Texto completoWenting Deng, S. Reeves y D. B. Twieg. "Fast magnetic resonance spectroscopic imaging using echo-time optimization". En 2010 IEEE Nuclear Science Symposium and Medical Imaging Conference (2010 NSS/MIC). IEEE, 2010. http://dx.doi.org/10.1109/nssmic.2010.5874152.
Texto completo"Evolutionary Optimization of Echo State Networks: Multiple Motor Pattern Learning". En 6th International Workshop on Artificial Neural Networks and Intelligent Information Processing. SciTePress - Science and and Technology Publications, 2010. http://dx.doi.org/10.5220/0003027500630071.
Texto completoMerabti, Hocine y Daniel Massicotte. "Robust nonlinear acoustic echo cancellation using a metaheuristic optimization approach". En 2015 IEEE International Conference on Digital Signal Processing (DSP). IEEE, 2015. http://dx.doi.org/10.1109/icdsp.2015.7251879.
Texto completoRomoli, Laura, Stefania Cecchi, Francesco Piazza, Danilo Comminiello, Michele Scarpiniti y Aurelio Uncini. "An interactive optimization procedure for stereophonic acoustic echo cancellation systems". En 2015 International Joint Conference on Neural Networks (IJCNN). IEEE, 2015. http://dx.doi.org/10.1109/ijcnn.2015.7280444.
Texto completoFan, Hsiao-Tien, Wei Wang y Zhanpeng Jin. "Performance optimization of echo state networks through principal neuron reinforcement". En 2017 International Joint Conference on Neural Networks (IJCNN). IEEE, 2017. http://dx.doi.org/10.1109/ijcnn.2017.7966058.
Texto completoMaat, Jacob Reinier, Nikos Gianniotis y Pavlos Protopapas. "Efficient Optimization of Echo State Networks for Time Series Datasets". En 2018 International Joint Conference on Neural Networks (IJCNN). IEEE, 2018. http://dx.doi.org/10.1109/ijcnn.2018.8489094.
Texto completo