Literatura académica sobre el tema "Dynamics of optimization"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Dynamics of optimization".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Dynamics of optimization"
Boettcher, Stefan y Allon G. Percus. "Optimization with Extremal Dynamics". Physical Review Letters 86, n.º 23 (4 de junio de 2001): 5211–14. http://dx.doi.org/10.1103/physrevlett.86.5211.
Texto completoBennett, J. A. y G. J. Park. "Automotive Occupant Dynamics Optimization". Shock and Vibration 2, n.º 6 (1995): 471–79. http://dx.doi.org/10.1155/1995/682694.
Texto completoTamura, Kenichi y Keiichiro Yasuda. "Spiral Dynamics Inspired Optimization". Journal of Advanced Computational Intelligence and Intelligent Informatics 15, n.º 8 (20 de octubre de 2011): 1116–22. http://dx.doi.org/10.20965/jaciii.2011.p1116.
Texto completoGay-Balmaz, François, Darryl D. Holm y Tudor S. Ratiu. "Geometric dynamics of optimization". Communications in Mathematical Sciences 11, n.º 1 (2013): 163–231. http://dx.doi.org/10.4310/cms.2013.v11.n1.a6.
Texto completoBarettin, Daniele y Paolo Sibani. "Optimization by record dynamics". Computer Physics Communications 185, n.º 3 (marzo de 2014): 730–35. http://dx.doi.org/10.1016/j.cpc.2013.10.030.
Texto completoBoettcher, Stefan y Allon G. Percus. "Optimization with extremal dynamics". Complexity 8, n.º 2 (noviembre de 2002): 57–62. http://dx.doi.org/10.1002/cplx.10072.
Texto completoSchuster, Peter y Karl Sigmund. "Dynamics of Evolutionary Optimization". Berichte der Bunsengesellschaft für physikalische Chemie 89, n.º 6 (junio de 1985): 668–82. http://dx.doi.org/10.1002/bbpc.19850890620.
Texto completoZhang, Jing, Xiaokai Zhu, Te Chen y Guowei Dou. "Optimal Dynamics Control in Trajectory Tracking of Industrial Robots Based on Adaptive Gaussian Pseudo-Spectral Algorithm". Algorithms 18, n.º 1 (3 de enero de 2025): 18. https://doi.org/10.3390/a18010018.
Texto completoLurie, K. A. "MATERIAL OPTIMIZATION AND DYNAMIC MATERIALS". Cybernetics and Physics, Volume 10, 2021, Number 2 (1 de octubre de 2021): 84–87. http://dx.doi.org/10.35470/2226-4116-2021-10-2-84-87.
Texto completoJiang, Shuai, Yuanpeng Lin, Jianan Liu, Linjing Xiao y Shuaishuai Zhang. "Dynamics Optimization Research and Dynamics Accuracy and Reliability Analysis of a Multi-Link Mechanism with Clearances". Machines 10, n.º 8 (16 de agosto de 2022): 698. http://dx.doi.org/10.3390/machines10080698.
Texto completoTesis sobre el tema "Dynamics of optimization"
Marsden, Christopher J. "Nonlinear dynamics of pattern recognition and optimization". Thesis, Loughborough University, 2012. https://dspace.lboro.ac.uk/2134/10694.
Texto completoZhu, Yitao. "Sensitivity Analysis and Optimization of Multibody Systems". Diss., Virginia Tech, 2015. http://hdl.handle.net/10919/71649.
Texto completoPh. D.
Lei, Zhen. "Isogeometric shell analysis and optimization for structural dynamics". Thesis, Ecully, Ecole centrale de Lyon, 2015. http://www.theses.fr/2015ECDL0028/document.
Texto completoIsogeometric method is a promising method in bridging the gap between the computer aided design and computer aided analysis. No information is lost when transferring the design model to the analysis model. It is a great advantage over the traditional finite element method, where the analysis model is only an approximation of the design model. It is advantageous for structural optimization, the optimal structure obtained will be a design model. In this thesis, the research is focused on the fast three dimensional free shape optimization with isogeometric shell elements. The related research, the development of isogeometric shell elements, the patch coupling in isogeometric analysis, the modal synthesis with isogeometric elements are also studied. We proposed a series of mixed grid Reissner-Minlin shell formulations. It adopts both the interpolatory basis functions, which are from the traditional FEM, and the non-interpolatory basis functions, which are from IGA, to approximate the unknown elds. It gives a natural way to define the fiber vectors in IGA Reissner-Mindlin shell formulations, where the non-interpolatory nature of IGA basis functions causes complexity. It is also advantageous for applying the rotational boundary conditions. A modified reduce quadrature scheme was also proposed to improve the quadrature eficiency, at the same time, relieve the locking in the shell formulations. We gave a method for patch coupling in isogeometric analysis. It is used to connect the adjacent patches. The classical modal synthesis method, the fixed interface Craig-Bampton method, is also used as well as the isogeometric Kirchhoff-Love shell elements. The key problem is also the connection between adjacent patches. The modal synthesis method can largely reduce the time costs in analysis concerning structural dynamics. This part of work lays a foundation for the fast shape optimization of built-up structures, where the design variables are only relevant to certain substructures. We developed a fast shape optimization framework for three dimensional thin wall structure design. The thin wall structure is modelled with isogeometric Kirchhoff-Love shell elements. The analytical sensitivity analysis is the key focus, since the gradient base optimization is normally more fast. There are two models in most optimization problem, the design model and the analysis model. The design variables are defined in the design model, however the analytical sensitivity is normally obtained from the analysis model. Although it is possible to use the same model in analysis and design under isogeomeric framework, it might give either a highly distorted optimum structure or a unreliable structural response. We developed a sensitivity mapping scheme to resolve this problem. The design sensitivity is extracted from the analysis model mesh level sensitivity, which is obtained by the discrete analytical sensitivity analysis. It provides exibility for the design variable definition. The correctness of structure response is also ensured. The modal synthesis method is also used to further improve the optimization eficiency for the built-up structure optimization concerning structural dynamics criteria
Lundvall, Johan. "Data Assimilation in Fluid Dynamics using Adjoint Optimization". Doctoral thesis, Linköping : Matematiska institutionen, Linköpings universitet, 2007. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-9684.
Texto completoROUSSEAU, Yannick, Igor MEN'SHOV y Yoshiaki NAKAMURA. "Morphing-Based Shape Optimization in Computational Fluid Dynamics". 日本航空宇宙学会, 2007. http://hdl.handle.net/2237/13876.
Texto completoMunro, Bruce C. "Airplane trajectory expansion for dynamics inversion". Thesis, This resource online, 1992. http://scholar.lib.vt.edu/theses/available/etd-07102009-040551/.
Texto completoWu, Kailiang. "Modeling the semiconductor industry dynamics". Thesis, Massachusetts Institute of Technology, 2008. http://hdl.handle.net/1721.1/45280.
Texto completoIncludes bibliographical references (p. 89-92).
The semiconductor industry is an exciting and challenging industry. Strong demand at the application end, plus the high capital intensity and rapid technological innovation in manufacturing, makes it difficult to manage supply chain planning and investment in technology transitions. Better understanding the essence of the industry dynamics will help firms win competitive advantages in this turbulent market. In this thesis, we will study semiconductor industry dynamics from three different angles: quantitative modeling, industry dynamics simulation, and strategic analysis. First, we develop a stochastic linear optimization model to address the supplier's "order fulfillment dilemma" suggested by previous empirical studies. The model provides optimal equipment production decisions that minimize the total cost under stochastic demand. To solve the large scale problem, we introduce the Bender's Decomposition, which is proven to outperform the pure Simplex method. Furthermore, we extend the basic model to multiple periods, allowing equipment inventory planning over a period of time. Second, we build a macro-level industry dynamic model using the methodology of System Dynamics. The model includes components of electronics demand projection, fabrication capacity allocation, fabrication cost structure, technology roadmapping as well as equipment production and R&D. The model generates projections of demand , industry productivity, schedule of building new fabrication, adoption of the latest process technology, etc., which are validated by actual industry data. In addition, we devise a control panel in the software that enables the users to implement flexible scenario and sensitivity analysis. Third, we propose a strategic framework for companies to pinpoint the root causes of the supply-demand mismatch problem.
(cont.) This framework considers long lead times, fast clockspeeds, Moore's Law, and risky product and technology, which transitions contribute to the pronounced volatility amplification occurring in the semiconductor industry. This framework, along with several industry successful practices, will assist companies to mitigate the demand volatility and improve their supply chain performance.
by Kailiang Wu.
S.M.
Williams, Nathan A. "Drag optimization of light trucks using computational fluid dynamics". Thesis, Monterey, Calif. : Springfield, Va. : Naval Postgraduate School ; Available from National Technical Information Service, 2003. http://library.nps.navy.mil/uhtbin/hyperion-image/03sep%5FWilliams%5FNathan.pdf.
Texto completoThesis advisor(s): Joshua H. Gordis, Dan Boger. Includes bibliographical references (p. 157-158). Also available online.
Kwok, Terence 1973. "Neural networks with nonlinear system dynamics for combinatorial optimization". Monash University, School of Business Systems, 2001. http://arrow.monash.edu.au/hdl/1959.1/8928.
Texto completoFahrenkopf, Max A. "Optimization, Dynamics and Stability of Non-Linear Separation Processes". Research Showcase @ CMU, 2014. http://repository.cmu.edu/dissertations/390.
Texto completoLibros sobre el tema "Dynamics of optimization"
Thévenin, Dominique y Gábor Janiga, eds. Optimization and Computational Fluid Dynamics. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008. http://dx.doi.org/10.1007/978-3-540-72153-6.
Texto completoDockner, Engelbert J., Richard F. Hartl, Mikulas Luptačik y Gerhard Sorger, eds. Optimization, Dynamics, and Economic Analysis. Heidelberg: Physica-Verlag HD, 2000. http://dx.doi.org/10.1007/978-3-642-57684-3.
Texto completo1966-, Thévenin Dominique y Janiga Gábor, eds. Optimization and computational fluid dynamics. Berlin: Springer Verlag, 2008.
Buscar texto completoPinto, Alberto y David Zilberman, eds. Modeling, Dynamics, Optimization and Bioeconomics IV. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-78163-7.
Texto completoPinto, Alberto Adrego y David Zilberman, eds. Modeling, Dynamics, Optimization and Bioeconomics I. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-04849-9.
Texto completoJunge, Oliver, Oliver Schütze, Gary Froyland, Sina Ober-Blöbaum y Kathrin Padberg-Gehle, eds. Advances in Dynamics, Optimization and Computation. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-51264-4.
Texto completoMatsumoto, Akio, ed. Optimization and Dynamics with Their Applications. Singapore: Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-4214-0.
Texto completoPinto, Alberto A. y David Zilberman, eds. Modeling, Dynamics, Optimization and Bioeconomics III. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-74086-7.
Texto completoPinto, Alberto A. y David Zilberman, eds. Modeling, Dynamics, Optimization and Bioeconomics II. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-55236-1.
Texto completoN, Bolotnik N. y Gradet͡s︡kiǐ V. G, eds. Manipulation robots: Dynamics, control, and optimization. Boca Raton: CRC Press, 1994.
Buscar texto completoCapítulos de libros sobre el tema "Dynamics of optimization"
Stavroulakis, Georgios E. "Transient Dynamics". En Applied Optimization, 187–223. Boston, MA: Springer US, 2001. http://dx.doi.org/10.1007/978-1-4615-0019-3_7.
Texto completoJazar, Reza N. "Suspension Optimization". En Vehicle Dynamics, 939–84. New York, NY: Springer New York, 2014. http://dx.doi.org/10.1007/978-1-4614-8544-5_14.
Texto completoGandolfo, Giancarlo. "Dynamic Optimization". En Economic Dynamics, 597–642. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-03871-6_27.
Texto completoJazar, Reza N. "Suspension Optimization". En Vehicle Dynamics, 883–943. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-53441-1_13.
Texto completoJazar, Reza N. "Suspension Optimization". En Vehicle Dynamics, 1033–94. Cham: Springer Nature Switzerland, 2025. https://doi.org/10.1007/978-3-031-74458-7_13.
Texto completoStavroulakis, Georgios E. "Steady-State Dynamics". En Applied Optimization, 157–86. Boston, MA: Springer US, 2001. http://dx.doi.org/10.1007/978-1-4615-0019-3_6.
Texto completoGhafil, Hazim Nasir y Károly Jármai. "Dynamics". En Optimization for Robot Modelling with MATLAB, 157–73. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-40410-9_7.
Texto completoHritonenko, Natali y Yuri Yatsenko. "Aggregate Models of Economic Dynamics". En Applied Optimization, 27–40. Boston, MA: Springer US, 1999. http://dx.doi.org/10.1007/978-1-4419-9733-3_2.
Texto completoLu, Yong-Zai, Yu-Wang Chen, Min-Rong Chen, Peng Chen y Guo-Qiang Chen. "Multiobjective Optimization with Extremal Dynamics". En Extremal Optimization, 165–212. Boca Raton : Auerbach Publications, 2015.: Auerbach Publications, 2018. http://dx.doi.org/10.1201/b19572-6.
Texto completoCoyle, R. G. "Optimization in practice". En System Dynamics Modelling, 249–96. Boston, MA: Springer US, 1996. http://dx.doi.org/10.1007/978-1-4899-2935-8_9.
Texto completoActas de conferencias sobre el tema "Dynamics of optimization"
Karpov, N. S., I. A. Alexandrov y A. K. Lampezhev. "Optimization of Group Loading of Equipment for Multiproduct Manufacturing". En 2024 Dynamics of Systems, Mechanisms and Machines (Dynamics), 1–5. IEEE, 2024. https://doi.org/10.1109/dynamics64718.2024.10838665.
Texto completoKhusainov, Emil y Vasily Anikin. "Methodology of Construction of Heuristic Algorithm for Optimization of Electrical Engineering Complexes". En 2024 Dynamics of Systems, Mechanisms and Machines (Dynamics), 1–5. IEEE, 2024. https://doi.org/10.1109/dynamics64718.2024.10838661.
Texto completoKulbida, U. N., O. N. Kaneva y A. V. Zykina. "Media planning optimization treatment". En 2014 Dynamics of Systems, Mechanisms and Machines (Dynamics). IEEE, 2014. http://dx.doi.org/10.1109/dynamics.2014.7005673.
Texto completoSemenikhin, Sviatoslav y Liudmila Denisova. "Learning to rank based on multi-criteria optimization". En 2017 Dynamics of Systems, Mechanisms and Machines (Dynamics). IEEE, 2017. http://dx.doi.org/10.1109/dynamics.2017.8239503.
Texto completoDenisova, Liudmila A. y Vitalii A. Meshcheryakov. "Control system synthesis based on multicriteria optimization using genetic algorithm". En 2017 Dynamics of Systems, Mechanisms and Machines (Dynamics). IEEE, 2017. http://dx.doi.org/10.1109/dynamics.2017.8239446.
Texto completoZadorozhnyi, V. N. y T. R. Zakharenkova. "Optimization of channel distribution over nodes in networks with fractal traffic". En 2016 Dynamics of Systems, Mechanisms and Machines (Dynamics). IEEE, 2016. http://dx.doi.org/10.1109/dynamics.2016.7819112.
Texto completoMakkapati, Satheesh, Steve Poe, Kim Ku y James Dopirak. "Valvetrain dynamics optimization". En 7th AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1998. http://dx.doi.org/10.2514/6.1998-4785.
Texto completoAnfilofiev, A. E., I. A. Hodashinsky y O. O. Evsutin. "Algorithm for tuning fuzzy network attack classifiers based on invasive weed optimization". En 2014 Dynamics of Systems, Mechanisms and Machines (Dynamics). IEEE, 2014. http://dx.doi.org/10.1109/dynamics.2014.7005632.
Texto completoKolokolov, Alexander A., Alexandra V. Artemova y Irina E. Kan. "Computer-aided design of some assortment groups of complex products using discrete optimization". En 2014 Dynamics of Systems, Mechanisms and Machines (Dynamics). IEEE, 2014. http://dx.doi.org/10.1109/dynamics.2014.7005667.
Texto completoMashkov, Yury K., Dmitry N. Korotaev, Marina Yu Baybaratskaya y Botagoz Sh Alimbaeva. "Research and optimization of technological modes of electro-spark processing details of tribosistem". En 2014 Dynamics of Systems, Mechanisms and Machines (Dynamics). IEEE, 2014. http://dx.doi.org/10.1109/dynamics.2014.7005682.
Texto completoInformes sobre el tema "Dynamics of optimization"
Arguello, Bryan, Nathan Stewart, Matthew Hoffman, Bethany Nicholson, Richard Garrett y Emily Moog. Dynamics Informed Optimization forResilient Energy Systems. Office of Scientific and Technical Information (OSTI), octubre de 2022. http://dx.doi.org/10.2172/1893998.
Texto completoNegre, Christian, Anders Niklasson, Joshua Finkelstein y Michael Wall. Next Generation Quantum Based Molecular Dynamics: Hybrid Performance Optimization. Office of Scientific and Technical Information (OSTI), marzo de 2023. http://dx.doi.org/10.2172/1963617.
Texto completoRamamurti, Ravi y William C. Sandberg. Computational Fluid Dynamics Study for Optimization of a Fin Design. Fort Belvoir, VA: Defense Technical Information Center, septiembre de 2005. http://dx.doi.org/10.21236/ada441476.
Texto completoBewley, Thomas R. Adjoint-Based Optimization and Control of Complex Dynamics in Fluid Systems. Fort Belvoir, VA: Defense Technical Information Center, septiembre de 2005. http://dx.doi.org/10.21236/ada441360.
Texto completoPulay, Peter y Jon Baker. Efficient Modeling of Large Molecules: Geometry Optimization Dynamics and Correlation Energy. Fort Belvoir, VA: Defense Technical Information Center, abril de 2003. http://dx.doi.org/10.21236/ada416248.
Texto completoShanbhag, Uday V., Tamer Basar, Sean Meyn y Prashant Mehta. EXTENDING THE REALM OF OPTIMIZATION FOR COMPLEX SYSTEMS: UNCERTAINTY, COMPETITION, AND DYNAMICS. Office of Scientific and Technical Information (OSTI), octubre de 2013. http://dx.doi.org/10.2172/1095695.
Texto completoPasupuleti, Murali Krishna. Mathematical Modeling for Machine Learning: Theory, Simulation, and Scientific Computing. National Education Services, marzo de 2025. https://doi.org/10.62311/nesx/rriv125.
Texto completoBylsma, Wesley. Simplified Dynamics and Mobility Factors for Multi-Disciplinary Optimization of an Occupant Centric Platform. Fort Belvoir, VA: Defense Technical Information Center, abril de 2012. http://dx.doi.org/10.21236/ada559920.
Texto completoSlapikas, Robert, Anindya Ghoshal, Luis Bravo, Muthuvel Murugan y Douglas Wolfe. Molecular Dynamics Analysis and Optimization of Ultra-High-Temperature Ceramic (UHTC)Compositions for Propulsion. Aberdeen Proving Ground, MD: DEVCOM Army Research Laboratory, junio de 2022. http://dx.doi.org/10.21236/ad1171344.
Texto completoSundaryanto, Bagus y Yanis C. Yortsos. Optimization of Fluid Front Dynamics in Porous Media Using Rate Control: I. Equal Mobility Fluids. Office of Scientific and Technical Information (OSTI), octubre de 1999. http://dx.doi.org/10.2172/13828.
Texto completo