Tesis sobre el tema "Dynamical Systems"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte los 50 mejores tesis para su investigación sobre el tema "Dynamical Systems".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Explore tesis sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.
Behrisch, Mike, Sebastian Kerkhoff, Reinhard Pöschel, Friedrich Martin Schneider y Stefan Siegmund. "Dynamical Systems in Categories". Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2013. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-129909.
Texto completoZaks, Michael. "Fractal Fourier spectra in dynamical systems". Thesis, [S.l.] : [s.n.], 2001. http://pub.ub.uni-potsdam.de/2002/0019/zaks.ps.
Texto completoHaydn, Nicolai Theodorus Antonius. "On dynamical systems". Thesis, University of Warwick, 1986. http://wrap.warwick.ac.uk/55813/.
Texto completoMiles, Richard Craig. "Arithmetic dynamical systems". Thesis, University of East Anglia, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.323222.
Texto completoChe, Dzul-Kifli Syahida. "Chaotic dynamical systems". Thesis, University of Birmingham, 2012. http://etheses.bham.ac.uk//id/eprint/3410/.
Texto completoHillman, Chris. "Sturmian dynamical systems /". Thesis, Connect to this title online; UW restricted, 1998. http://hdl.handle.net/1773/5806.
Texto completoUmenberger, Jack. "Convex Identifcation of Stable Dynamical Systems". Thesis, The University of Sydney, 2017. http://hdl.handle.net/2123/17321.
Texto completoFreeman, Isaac. "A modular system for constructing dynamical systems". Thesis, University of Canterbury. Mathematics, 1998. http://hdl.handle.net/10092/8888.
Texto completoOzaki, Junichi. "Dynamical quantum effects in cluster dynamics of Fermi systems". 京都大学 (Kyoto University), 2015. http://hdl.handle.net/2433/199083.
Texto completoCAPPELLINI, VALERIO. "QUANTUM DYNAMICAL ENTROPIES AND COMPLEXITY IN DYNAMICAL SYSTEMS". Doctoral thesis, Università degli studi di Trieste, 2004. http://thesis2.sba.units.it/store/handle/item/12545.
Texto completoWe analyze the behavior of two quantum dynamical entropies in connection with the classical limit. Using strongly chaotic classical dynamical systems as models (Arnold Cat Maps and Sawtooth Maps), we also propose a discretization procedure that resembles quantization; even in this case, studies of quantum dynamical entropy production are carried out and the connection with the continuous limit is explored. In both case (quantization and discretization) the entropy production converge to the Kolmogorov-Sinai invariant on time-scales that are logarithmic in the quantization (discretization) parameter.
XVI Ciclo
1969
Versione digitalizzata della tesi di dottorato cartacea.
McKee, Andrew. "Multipliers of dynamical systems". Thesis, Queen's University Belfast, 2017. https://pure.qub.ac.uk/portal/en/theses/multipliers-of-dynamical-systems(65b93a06-6e7b-420b-ae75-c28d373f8bdf).html.
Texto completoHook, James Louis. "Topics in dynamical systems". Thesis, University of Manchester, 2012. https://www.research.manchester.ac.uk/portal/en/theses/topics-in-dynamical-systems(427b5d98-197d-4b53-876e-a81142f72375).html.
Texto completoHua, Xinhou. "Dynamical systems and wavelets". Thesis, University of Ottawa (Canada), 2002. http://hdl.handle.net/10393/6143.
Texto completoDam, Albert Anton ten. "Unilaterally constrained dynamical systems". [S.l : [Groningen] : s.n.] ; [University Library Groningen] [Host], 1997. http://irs.ub.rug.nl/ppn/159407869.
Texto completoSchinkel, Michael. "Nondeterministic hybrid dynamical systems". Thesis, University of Glasgow, 2002. http://theses.gla.ac.uk/1853/.
Texto completoChan, N. "Dynamical systems in cosmology". Thesis, University College London (University of London), 2012. http://discovery.ucl.ac.uk/1348375/.
Texto completoKrcelic, Khristine M. "Chaos and Dynamical Systems". Youngstown State University / OhioLINK, 2012. http://rave.ohiolink.edu/etdc/view?acc_num=ysu1364545282.
Texto completoRoyals, Robert. "Arithmetic and dynamical systems". Thesis, University of East Anglia, 2015. https://ueaeprints.uea.ac.uk/57191/.
Texto completoHayden, Kevin. "Modeling of dynamical systems /". abstract and full text PDF (UNR users only), 2007. http://0-gateway.proquest.com.innopac.library.unr.edu/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqdiss&rft_dat=xri:pqdiss:1446796.
Texto completo"May, 2007." Includes bibliographical references (leaves 128-129). Library also has microfilm. Ann Arbor, Mich. : ProQuest Information and Learning Company, [2008]. 1 microfilm reel ; 35 mm. Online version available on the World Wide Web.
Sun, Hongyan. "Coupled nonlinear dynamical systems". Morgantown, W. Va. : [West Virginia University Libraries], 2000. http://etd.wvu.edu/templates/showETD.cfm?recnum=1636.
Texto completoTitle from document title page. Document formatted into pages; contains xi, 113 p. : ill. (some col.). Includes abstract. Includes bibliographical references.
Tse, Pak-hoi Isaac. "Dynamical systems theory and school change". Click to view the E-thesis via HKUTO, 2006. http://sunzi.lib.hku.hk/hkuto/record/B37626218.
Texto completoTse, Pak-hoi Isaac y 謝伯開. "Dynamical systems theory and school change". Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2006. http://hub.hku.hk/bib/B37626218.
Texto completoKuhlman, Christopher James. "Generalizations of Threshold Graph Dynamical Systems". Thesis, Virginia Tech, 2013. http://hdl.handle.net/10919/76765.
Texto completoMaster of Science
Nersesov, Sergey G. "Nonlinear Impulsive and Hybrid Dynamical Systems". Diss., Georgia Institute of Technology, 2005. http://hdl.handle.net/1853/7147.
Texto completoShadden, Shawn Christopher Marsden Jerrold E. "A dynamical systems approach to unsteady systems /". Diss., Pasadena, Calif. : Caltech, 2006. http://resolver.caltech.edu/CaltechETD:etd-05122006-083011.
Texto completoSchneider, Judith. "Dynamical structures and manifold detection in 2D and 3D chaotic flows". Phd thesis, [S.l. : s.n.], 2004. http://deposit.ddb.de/cgi-bin/dokserv?idn=973637420.
Texto completoGil, Gibin. "Hybrid Numerical Integration Scheme for Highly Oscillatory Dynamical Systems". Diss., The University of Arizona, 2013. http://hdl.handle.net/10150/306771.
Texto completoZhao, Zhenyuan. "Dynamical Grouping in Complex Systems". Scholarly Repository, 2010. http://scholarlyrepository.miami.edu/oa_dissertations/498.
Texto completoBadar, Muhammad. "Dynamical Systems Over Finite Groups". Thesis, Linnéuniversitetet, Institutionen för datavetenskap, fysik och matematik, DFM, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:lnu:diva-17948.
Texto completoNewman, Julian. "Synchronisation in random dynamical systems". Thesis, Imperial College London, 2015. http://hdl.handle.net/10044/1/39569.
Texto completoHendtlass, Matthew Ralph John. "Aspects of Constructive Dynamical Systems". Thesis, University of Canterbury. Mathematics and Statistics, 2009. http://hdl.handle.net/10092/2724.
Texto completoOzik, Jonathan. "Evolution of discrete dynamical systems". College Park, Md. : University of Maryland, 2005. http://hdl.handle.net/1903/2351.
Texto completoThesis research directed by: Physics. Title from t.p. of PDF. Includes bibliographical references. Published by UMI Dissertation Services, Ann Arbor, Mich. Also available in paper.
Ertem, Turker. "Asymptotic Integration Of Dynamical Systems". Phd thesis, METU, 2013. http://etd.lib.metu.edu.tr/upload/12615405/index.pdf.
Texto completo&prime
= f (t, x) (0.1) and the solutions 1 and t of x&prime
&prime
= 0. More specifically, the existence of a solution of (0.1) asymptotic to x(t) = at + b, a, b &isin
R has been obtained. In this thesis we investigate in a systematic way the asymptotic behavior as t &rarr
&infin
of solutions of a class of differential equations of the form (p(t)x&prime
)&prime
+ q(t)x = f (t, x), t &ge
t_0 (0.2) and (p(t)x&prime
)&prime
+ q(t)x = g(t, x, x&prime
), t &ge
t_0 (0.3) by the help of principal u(t) and nonprincipal v(t) solutions of the corresponding homogeneous equation (p(t)x&prime
)&prime
+ q(t)x = 0, t &ge
t_0. (0.4) Here, t_0 &ge
0 is a real number, p &isin
C([t_0,&infin
), (0,&infin
)), q &isin
C([t_0,&infin
),R), f &isin
C([t_0,&infin
) ×
R,R) and g &isin
C([t0,&infin
) ×
R ×
R,R). Our argument is based on the idea of writing the solution of x&prime
&prime
= 0 in terms of principal and nonprincipal solutions as x(t) = av(t) + bu(t), where v(t) = t and u(t) = 1. In the proofs, Banach and Schauder&rsquo
s fixed point theorems are used. The compactness of the operator is obtained by employing the compactness criteria of Riesz and Avramescu. The thesis consists of three chapters. Chapter 1 is introductory and provides statement of the problem, literature review, and basic definitions and theorems. In Chapter 2 first we deal with some asymptotic relationships between the solutions of (0.2) and the principal u(t) and nonprincipal v(t) solutions of (0.4). Then we present existence of a monotone positive solution of (0.3) with prescribed asimptotic behavior. In Chapter 3 we introduce the existence of solution of a singular boundary value problem to the Equation (0.2).
Johnson, M. E. "Bifurcations in lattice dynamical systems". Thesis, University of Cambridge, 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.605623.
Texto completoBernhard, Michael A. "Introduction to chaotic dynamical systems". Thesis, Monterey, California. Naval Postgraduate School, 1992. http://hdl.handle.net/10945/23708.
Texto completoClewlow, Les. "Cellular automata and dynamical systems". Thesis, University of Warwick, 1989. http://wrap.warwick.ac.uk/4233/.
Texto completoGarira, Winston. "Synchronisation of coupled dynamical systems". Thesis, University of London, 2002. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.399495.
Texto completoBandtlow, Oscar F. "Spectral analysis of dynamical systems". Thesis, University of Cambridge, 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.396095.
Texto completoCampanella, Giammarco. "Dynamical aspects of exoplanetary systems". Thesis, Queen Mary, University of London, 2013. http://qmro.qmul.ac.uk/xmlui/handle/123456789/8374.
Texto completoJoyner, Sheldon T. "On non-archimedean dynamical systems". Thesis, Stellenbosch : Stellenbosch University, 2000. http://hdl.handle.net/10019.1/51861.
Texto completoENGLISH ABSTRACT: A discrete dynamical system is a pair (X, cf;) comprising a non-empty set X and a map cf; : X ---+ X. A study is made of the effect of repeated application of cf; on X, whereby points and subsets of X are classified according to their behaviour under iteration. These subsets include the JULIA and FATOU sets of the map and the sets of periodic and preperiodic points, and many interesting questions arise in the study of their properties. Such questions have been extensively studied in the case of complex dynamics, but much recent work has focussed on non-archimedean dynamical systems, when X is projective space over some field equipped with a non-archimedean metric. This work has uncovered many parallels to complex dynamics alongside more striking differences. In this thesis, various aspects of the theory of non-archimedean dynamics are presented, with particular reference to JULIA and FATOU sets and the relationship between good reduction of a map and the empty JULIA set. We also discuss questions of the finiteness of the sets of periodic points in special contexts.
AFRIKAANSE OPSOMMING: 'n Paar (X,
Frisk, Martin. "Synchronization in chaotic dynamical systems". Thesis, Uppsala universitet, Tillämpad matematik och statistik, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-287624.
Texto completoLiu, Zheng. "Dynamical systems and random perturbations". Diss., The University of Arizona, 1993. http://hdl.handle.net/10150/186232.
Texto completoCarracedo, Rodriguez Andrea. "Approximation of Parametric Dynamical Systems". Diss., Virginia Tech, 2020. http://hdl.handle.net/10919/99895.
Texto completoDoctor of Philosophy
Simulation of mathematical models plays an important role in the development of science. There is a wide range of models and approaches that depend on the information available and the goal of the problem. In this dissertation we focus on three problems whose solution depends on parameters and for which we have either data resulting from simulations of the model or a explicit structure that describes the model. First, for the case when only data are available, we develop an algorithm that builds a data-driven approximation that is then easy to reevaluate. Second, we embed our algorithm in an already developed framework for the solution of a specific kind of model structure: nonlinear eigenvalue problems. Third, given a model with a specific nonlinear structure, we develop a method to build a model with the same structure, smaller dimension (for faster computation), and that provides an accurate approximation of the original model.
Grimm, Alexander Rudolf. "Taming of Complex Dynamical Systems". Thesis, Virginia Tech, 2013. http://hdl.handle.net/10919/24775.
Texto completoMaster of Science
Mcnitt, Joseph Andrew. "Stability in Graph Dynamical Systems". Thesis, Virginia Tech, 2018. http://hdl.handle.net/10919/83604.
Texto completoMaster of Science
Polo, Fabrizio. "Equidistribution on Chaotic Dynamical Systems". The Ohio State University, 2011. http://rave.ohiolink.edu/etdc/view?acc_num=osu1306527005.
Texto completoBhagavatula, Ravi S. "Topics in extended dynamical systems /". The Ohio State University, 1994. http://rave.ohiolink.edu/etdc/view?acc_num=osu1487856076416283.
Texto completoKupsa, Michal. "Return times in dynamical systems". Toulon, 2005. http://www.theses.fr/2005TOUL0009.
Texto completoSeveral statistics of hitting and return times in dynamical systems are investigated in this thesis. It concerns local return rates and the limit laws of k-th return and hitting times. Formulas to compute the local return rates in Sturmian shifts are developed. The class of all limit laws of the first hitting times is described. The class of all limit laws of the k-th return times is shown to be the same as the class of all limit laws of the first return times, characterized by Lacroix. Last but not least, we exhibit a link between k-limit laws of return and hitting times
Stergiopoulou, Aikaterini. "Dynamical Stability of Planetary Systems". Thesis, Uppsala universitet, Institutionen för fysik och astronomi, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-323006.
Texto completoDundar, Veli Ufuktepe Ünal. "Dynamical Systems on Time Scales/". [s.l.]: [s.n.], 2007. http://library.iyte.edu.tr/tezler/master/matematik/T000648.pdf.
Texto completo