Tesis sobre el tema "Dynamical models on networks"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte los 50 mejores tesis para su investigación sobre el tema "Dynamical models on networks".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Explore tesis sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.
Tupikina, Liubov. "Temporal and spatial aspects of correlation networks and dynamical network models". Doctoral thesis, Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät, 2017. http://dx.doi.org/10.18452/17746.
Texto completoIn the thesis I studied the complex architectures of networks, the network evolution in time, the interpretation of the networks measures and a particular class of processes taking place on complex networks. Firstly, I derived the measures to characterize temporal networks evolution in order to detect spatial variability patterns in evolving systems. Secondly, I introduced a novel flow-network method to construct networks from flows, that also allows to modify the set-up from purely relying on the velocity field. The flow-network method is developed for correlations of a scalar quantity (temperature, for example), which satisfies advection-diffusion dynamics in the presence of forcing and dissipation. This allows to characterize transport in the fluids, to identify various mixing regimes in the flow and to apply this method to advection-diffusion dynamics, data from climate and other systems, where particles transport plays a crucial role. Thirdly, I developed a novel Heterogeneous Opinion-Status model (HOpS) and analytical technique to study dynamical processes on networks. All in all, methods, derived in the thesis, allow to quantify evolution of various classes of complex systems, to get insight into physical meaning of correlation networks and analytically to analyze processes, taking place on networks.
DI, GANGI Domenico. "Models of dynamical networks with applications to finance". Doctoral thesis, Scuola Normale Superiore, 2022. http://hdl.handle.net/11384/112204.
Texto completoPreciado, Víctor Manuel. "Spectral analysis for stochastic models of large-scale complex dynamical networks". Thesis, Massachusetts Institute of Technology, 2008. http://hdl.handle.net/1721.1/45873.
Texto completoIncludes bibliographical references (p. 179-196).
Research on large-scale complex networks has important applications in diverse systems of current interest, including the Internet, the World-Wide Web, social, biological, and chemical networks. The growing availability of massive databases, computing facilities, and reliable data analysis tools has provided a powerful framework to explore structural properties of such real-world networks. However, one cannot efficiently retrieve and store the exact or full topology for many large-scale networks. As an alternative, several stochastic network models have been proposed that attempt to capture essential characteristics of such complex topologies. Network researchers then use these stochastic models to generate topologies similar to the complex network of interest and use these topologies to test, for example, the behavior of dynamical processes in the network. In general, the topological properties of a network are not directly evident in the behavior of dynamical processes running on it. On the other hand, the eigenvalue spectra of certain matricial representations of the network topology do relate quite directly to the behavior of many dynamical processes of interest, such as random walks, Markov processes, virus/rumor spreading, or synchronization of oscillators in a network. This thesis studies spectral properties of popular stochastic network models proposed in recent years. In particular, we develop several methods to determine or estimate the spectral moments of these models. We also present a variety of techniques to extract relevant spectral information from a finite sequence of spectral moments. A range of numerical examples throughout the thesis confirms the efficacy of our approach. Our ultimate objective is to use such results to understand and predict the behavior of dynamical processes taking place in large-scale networks.
by Víctor Manuel Preciado.
Ph.D.
He, Ping. "Robust synchronization of dynamical networks with delay and uncertainty :synthesis & application". Thesis, University of Macau, 2017. http://umaclib3.umac.mo/record=b3691044.
Texto completoNath, Madhurima. "Application of Network Reliability to Analyze Diffusive Processes on Graph Dynamical Systems". Diss., Virginia Tech, 2019. http://hdl.handle.net/10919/86841.
Texto completoPh. D.
The research presented here explores the effects of the structural properties of an interacting system on the outcomes of a diffusive process using Moore-Shannon network reliability. The network reliability is a finite degree polynomial which provides the probability of observing a certain configuration for a diffusive process on networks. Examples of such processes analyzed here are outbreak of an epidemic in a population, spread of an invasive species through international trade of commodities and spread of a perturbation in a physical system with discrete magnetic spins. Network reliability is a novel tool which can be used to compare the efficiency of network models with the observed data, to find important components of the system as well as to estimate the functions of thermodynamic state variables.
McLoone, Seamus Cornelius. "Nonlinear identification using local model networks". Thesis, Queen's University Belfast, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.326349.
Texto completoGong, Xue. "Dynamical Systems in Cell Division Cycle, Winnerless Competition Models, and Tensor Approximations". Ohio University / OhioLINK, 2016. http://rave.ohiolink.edu/etdc/view?acc_num=ohiou1458303716.
Texto completoHellmann, Tim. "Stable networks in static and dynamic models of network formation". Hamburg Kovač, 2009. http://d-nb.info/1001547497/04.
Texto completoLi, Caiwei. "Dynamic scheduling of multiclass queueing networks". Diss., Georgia Institute of Technology, 2000. http://hdl.handle.net/1853/24339.
Texto completoSIRI, ENRICO. "Dynamic traffic assignment models for disrupted networks". Doctoral thesis, Università degli studi di Genova, 2022. http://hdl.handle.net/11567/1091373.
Texto completoPaltrinieri, Federico. "Modeling temporal networks with dynamic stochastic block models". Master's thesis, Alma Mater Studiorum - Università di Bologna, 2019. http://amslaurea.unibo.it/18805/.
Texto completoDalle, Pezze Piero. "Dynamical models of the mammalian target of rapamycin network in ageing". Thesis, University of Newcastle upon Tyne, 2013. http://hdl.handle.net/10443/2183.
Texto completoTolson, Edward (Edward Thomas) 1980. "Learning models of world dynamics using Bayesian networks". Thesis, Massachusetts Institute of Technology, 2002. http://hdl.handle.net/1721.1/87841.
Texto completoIncludes bibliographical references (leaves 72-74).
by Edward Tolson.
M.Eng.
Mazzarisi, Piero. "Dynamic network models with applications to finance". Doctoral thesis, Scuola Normale Superiore, 2019. http://hdl.handle.net/11384/85711.
Texto completoDzalilov, Zari. "Mathematical models of dynamic reconfiguration of telecommunication networks". Thesis, University of Ballarat, 2004. http://researchonline.federation.edu.au/vital/access/HandleResolver/1959.17/58707.
Texto completoDoctor of Philosophy
Arat, Seda. "A Mathematical Model of a Denitrification Metabolic Network in Pseudomonas aeruginosa". Thesis, Virginia Tech, 2012. http://hdl.handle.net/10919/46208.
Texto completoMaster of Science
Junuthula, Ruthwik Reddy. "Modeling, Evaluation and Analysis of Dynamic Networks for Social Network Analysis". University of Toledo / OhioLINK, 2018. http://rave.ohiolink.edu/etdc/view?acc_num=toledo1544819215833249.
Texto completoZschaler, Gerd. "Adaptive-network models of collective dynamics". Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2012. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-89260.
Texto completoJiao, Yue. "Mathematical models for control of probabilistic Boolean networks". Click to view the E-thesis via HKUTO, 2008. http://sunzi.lib.hku.hk/hkuto/record/B41508634.
Texto completoZschaler, Gerd. "Adaptive-network models of collective dynamics". Doctoral thesis, Max-Planck-Institut für Physik komplexer Systeme, 2011. https://tud.qucosa.de/id/qucosa%3A26056.
Texto completoRohden, Martin [Verfasser], Marc [Akademischer Betreuer] Timme, Tim [Akademischer Betreuer] Friede y Reiner [Akademischer Betreuer] Kree. "Synchronization and Stability in Dynamical Models of Power Supply Networks / Martin Rohden. Gutachter: Tim Friede ; Reiner Kree. Betreuer: Marc Timme". Göttingen : Niedersächsische Staats- und Universitätsbibliothek Göttingen, 2015. http://d-nb.info/106504478X/34.
Texto completoJiao, Yue y 焦月. "Mathematical models for control of probabilistic Boolean networks". Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2008. http://hub.hku.hk/bib/B41508634.
Texto completoBoulaire, Fanny A. "Compositional agent-based models for electricity distribution networks". Thesis, Queensland University of Technology, 2015. https://eprints.qut.edu.au/90054/12/90054%28thesis%29.pdf.
Texto completoKC, Rabi. "Study of Some Biologically Relevant Dynamical System Models: (In)stability Regions of Cyclic Solutions in Cell Cycle Population Structure Model Under Negative Feedback and Random Connectivities in Multitype Neuronal Network Models". Ohio University / OhioLINK, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=ohiou16049254273607.
Texto completoTupikina, Liubov [Verfasser], Jürgen [Gutachter] Kurths, Lutz [Gutachter] Schimansky-Geier y Sergei [Gutachter] Nechaev. "Temporal and spatial aspects of correlation networks and dynamical network models : analytical approaches and physical applications / Liubov Tupikina ; Gutachter: Jürgen Kurths, Lutz Schimansky-Geier, Sergei Nechaev". Berlin : Mathematisch-Naturwissenschaftliche Fakultät, 2017. http://d-nb.info/1130698483/34.
Texto completoOjha, Hem Raj. "Link Dynamics in Student Collaboration Networks using Schema Based Structured Network Models on Canvas LMS". Miami University / OhioLINK, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=miami1596154905454069.
Texto completoHalnes, Geir. "Biological network modelling : relating structure and dynamics to function in food webs and neural networks /". Uppsala : Dept. of Biometry and Engineering, Swedish University of Agricultural Sciences, 2007. http://epsilon.slu.se/2007113.pdf.
Texto completoWoodbury, Nathan Scott. "Representation and Reconstruction of Linear, Time-Invariant Networks". BYU ScholarsArchive, 2019. https://scholarsarchive.byu.edu/etd/7402.
Texto completoKooner, Priya. "Mathematical modelling of tumour invasion : from biochemical networks to tissue dynamics". Thesis, University of Oxford, 2006. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.670187.
Texto completoFLEISCHMAN, GREGORY JOSEPH. "FLUID FILTRATION FROM CAPILLARY NETWORKS (MICROCIRCULATION, MATHEMATICAL MODELING)". Diss., The University of Arizona, 1985. http://hdl.handle.net/10150/187998.
Texto completoColombini, Giulio. "Synchronisation phenomena in complex neuronal networks". Master's thesis, Alma Mater Studiorum - Università di Bologna, 2021. http://amslaurea.unibo.it/23904/.
Texto completoIyer, Bharat Vishwanathan. "Capacity and scale-free dynamics of evolving wireless networks". Thesis, Texas A&M University, 2003. http://hdl.handle.net/1969.1/1359.
Texto completoKulkarni, Anirudh. "Dynamics of neuronal networks". Thesis, Paris 6, 2017. http://www.theses.fr/2017PA066377/document.
Texto completoIn this thesis, we investigate the vast field of neuroscience through theoretical, numerical and experimental tools. We study how rate models can be used to capture various phenomena observed in the brain. We study the dynamical regimes of coupled networks of excitatory (E) and inhibitory neurons (I) using a rate model description and compare with numerical simulations of networks of neurons described by the EIF model. We focus on the regime where the EI network exhibits oscillations and then couple two of these oscillating networks to study the resulting dynamics. The description of the different regimes for the case of two populations is helpful to understand the synchronization of a chain of E-I modules and propagation of waves observed in the brain. We also look at rate models of sensory adaptation. We propose one such model to describe the illusion of motion after effect in the zebrafish larva. We compare this rate model with newly obtained behavioural and neuronal data in the zebrafish larva
Laughton, Stephen Nicholas. "Dynamics of neural networks and disordered spin systems". Thesis, University of Oxford, 1995. http://ora.ox.ac.uk/objects/uuid:5531cef6-4682-4750-9c5c-cb69e5e72d64.
Texto completoChaves, Madalena. "Predictive analysis of dynamical systems: combining discrete and continuous formalisms". Habilitation à diriger des recherches, Université Nice Sophia Antipolis, 2013. http://tel.archives-ouvertes.fr/tel-00908927.
Texto completoAhn, Sungwoo. "Transient and Attractor Dynamics in Models for Odor Discrimination". The Ohio State University, 2010. http://rave.ohiolink.edu/etdc/view?acc_num=osu1280342970.
Texto completoMoller, Karl. "Dynamics of an active crosslinker on a chain and aspects of the dynamics of polymer networks". Thesis, Stellenbosch : Stellenbosch University, 2011. http://hdl.handle.net/10019.1/18001.
Texto completoENGLISH ABSTRACT: Active materials are a subset of soft matter that is constantly being driven out of an equilibrium state due to the energy input from internal processes such as the hydrolysis of adenosine triphosphate (ATP) to adenosine diphosphate (ADP), as found in biological systems. Firstly, we construct and study a simple model of a flexible filament with an active crosslinker/molecular motor. We treat the system on a mesoscopic scale using a Langevin equation approach, which we analyse via a functional integral approach using the Martin-Siggia-Rose formalism. We characterise the steady state behaviour of the system up to first order in the motor force and also the autocorrelation of fluctuations of the position of the active crosslink on the filament. We find that this autocorrelation function does not depend on the motor force up to first order for the case where the crosslinker is located in the middle of the contour length of the filament. Properties that characterise the elastic response of the system are studied and found to scale with the autocorrelation of fluctuations of the active crosslink position. Secondly, we give a brief overview of the current state of dynamical polymer network theory and then propose two dynamical network models based on a Cayley-tree topology. Our first model takes a renormalisation approach and derive recurrence relations for the coupling constants of the system. The second model builds on the ideas of an Edwards type network theory where Wick’s theorem is employed to enforce the constraint conditions. Both models are examined using a functional integral approach.
AFRIKAANSE OPSOMMING: Aktiewe stelsels is ’n subveld van sagte materie fisika wat handel oor sisteme wat uit ekwilibruim gedryf word deur middel van interne prossesse, soos wat gevind word in biologiese stelsels. Eerstens konstruëer en bestudeer ons ’n model vir ’n buigbare filament met ’n aktiewe kruisskakelaar of molekulêre motor. Ons formuleer die stelsel op ’n mesoskopiese skaal deur gebruik te maak van ’n Langevin vergelyking formalisme en bestudeer die stelsel deur gebruik te maak van funksionaal integraal metodes deur middel van die Martin-Siggia-Rose formalisme. Dit laat ons in staat om die tydonafhankle gedrag van die stelsel te bestudeer tot op eerste orde in die motorkrag. Ons is ook in staat om die outokorrelasie fluktuasies van die posisie van die aktiewe kruisskakelaar te karakteriseer. Ons vind dat die outokorrelasie onafhanklink is van die motorkrag tot eerste orde in die geval waar die kruisskakelaar in die middel van die filament geleë is. Die elastiese eienksappe van die sisteem word ook ondersoek en gevind dat die skaleer soos die outokorrelasie van die fluktuasies van die aktiewe kruisskakelaar posisie. Tweedens gee ons ’n vlugtige oorsig van die huidige toestand van dinamiese polimeer netwerk teorie en stel dan ons eie twee modelle voor wat gebasseer is op ’n Caylee-boom topologie. Ons eerste model maak gebruik van ’n hernormering beginsel en dit laat ons toe om rekurrensierelasies vir die koppelingskonstates te verkry. Die tweede model bou op idees van ’n Edwards tipe netwerk teorie waar Wick se teorema ingespan word om die beperkingskondisies af te dwing. Beide modelle word met funksionaal integraal metodes bestudeer.
Dimitrova, Elena Stanimirova. "Polynomial Models for Systems Biology: Data Discretization and Term Order Effect on Dynamics". Diss., Virginia Tech, 2006. http://hdl.handle.net/10919/28490.
Texto completoPh. D.
Leung, Chi Ho. "Necessary and Sufficient Conditions on State Transformations That Preserve the Causal Structure of LTI Dynamical Networks". BYU ScholarsArchive, 2019. https://scholarsarchive.byu.edu/etd/7413.
Texto completoCami, Aurel. "ANALYZING THE COMMUNITY STRUCTURE OF WEB-LIKE NETWORKS: MODELS AND ALGORITHMS". Doctoral diss., University of Central Florida, 2005. http://digital.library.ucf.edu/cdm/ref/collection/ETD/id/2590.
Texto completoPh.D.
School of Computer Science
Engineering and Computer Science
Computer Science
Delitzscher, Sascha [Verfasser]. "Random networks, threshold models and social dynamics / Sascha Delitzscher. Fakultät für Physik". Bielefeld : Universitätsbibliothek Bielefeld, Hochschulschriften, 2012. http://d-nb.info/1019576111/34.
Texto completoKolgushev, Oleg. "Influence of Underlying Random Walk Types in Population Models on Resulting Social Network Types and Epidemiological Dynamics". Thesis, University of North Texas, 2016. https://digital.library.unt.edu/ark:/67531/metadc955128/.
Texto completoGargesa, Padmashri. "Reward-driven Training of Random Boolean Network Reservoirs for Model-Free Environments". PDXScholar, 2013. https://pdxscholar.library.pdx.edu/open_access_etds/669.
Texto completoAbufouda, Mohammed [Verfasser] y Katharina [Akademischer Betreuer] Zweig. "Learning From Networked-data: Methods and Models for Understanding Online Social Networks Dynamics / Mohammed Abufouda ; Betreuer: Katharina Zweig". Kaiserslautern : Technische Universität Kaiserslautern, 2020. http://d-nb.info/1221599747/34.
Texto completoMANFREDOTTI, CRISTINA ELENA. "Modeling and inference with relational dynamic bayesian networks". Doctoral thesis, Università degli Studi di Milano-Bicocca, 2010. http://hdl.handle.net/10281/7829.
Texto completoEaton, Carrie Elizabeth Diaz. "Ion Channel Dynamics in Interneuron Models of the Cricket Cercal Sensory System". Fogler Library, University of Maine, 2004. http://www.library.umaine.edu/theses/pdf/EatonCED2004.pdf.
Texto completoAnacleto, Junior Osvaldo. "Bayesian dynamic graphical models for high-dimensional flow forecasting in road traffic networks". Thesis, Open University, 2012. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.594253.
Texto completoArastuie, Makan. "Generative Models of Link Formation and Community Detection in Continuous-Time Dynamic Networks". University of Toledo / OhioLINK, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=toledo1596718772873086.
Texto completoFusion, Joe. "The Role of Environmental Dynamics in the Emergence of Autocatalytic Networks". PDXScholar, 2015. https://pdxscholar.library.pdx.edu/open_access_etds/2458.
Texto completoMuller, Lyle. "Spatiotemporal dynamics in neocortex : quantification, analysis, models". Phd thesis, Université Pierre et Marie Curie - Paris VI, 2014. http://tel.archives-ouvertes.fr/tel-01067199.
Texto completo