Literatura académica sobre el tema "Dynamical memory"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Dynamical memory".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Dynamical memory"
Ganguli, S., D. Huh y H. Sompolinsky. "Memory traces in dynamical systems". Proceedings of the National Academy of Sciences 105, n.º 48 (19 de noviembre de 2008): 18970–75. http://dx.doi.org/10.1073/pnas.0804451105.
Texto completoRehn, Martin y Anders Lansner. "Sequence memory with dynamical synapses". Neurocomputing 58-60 (junio de 2004): 271–78. http://dx.doi.org/10.1016/j.neucom.2004.01.055.
Texto completoMitchell, Melanie. "Human Memory: A Dynamical Process". Contemporary Psychology 48, n.º 3 (junio de 2003): 326–27. http://dx.doi.org/10.1037/000805.
Texto completoBoffetta, G., R. Monasson y R. Zecchina. "MEMORY RETRIEVAL IN OPTIMAL SUBSPACES". International Journal of Neural Systems 03, supp01 (enero de 1992): 71–77. http://dx.doi.org/10.1142/s0129065792000401.
Texto completoAICARDI, FRANCESCA y SERGIO INVERNIZZI. "MEMORY EFFECTS IN DISCRETE DYNAMICAL SYSTEMS". International Journal of Bifurcation and Chaos 02, n.º 04 (diciembre de 1992): 815–30. http://dx.doi.org/10.1142/s0218127492000458.
Texto completoKlinshov, Vladimir V. y Vladimir I. Nekorkin. "Dynamical model of working memory system". Neuroscience Research 58 (enero de 2007): S44. http://dx.doi.org/10.1016/j.neures.2007.06.259.
Texto completoBrianzoni, Serena, Cristiana Mammana, Elisabetta Michetti y Francesco Zirilli. "A Stochastic Cobweb Dynamical Model". Discrete Dynamics in Nature and Society 2008 (2008): 1–18. http://dx.doi.org/10.1155/2008/219653.
Texto completoOliveira, H. S., A. S. de Paula y M. A. Savi. "Dynamical Jumps in a Shape Memory Alloy Oscillator". Shock and Vibration 2014 (2014): 1–10. http://dx.doi.org/10.1155/2014/656212.
Texto completoMohapatra, Anushaya y William Ott. "Memory loss for nonequilibrium open dynamical systems". Discrete & Continuous Dynamical Systems - A 34, n.º 9 (2014): 3747–59. http://dx.doi.org/10.3934/dcds.2014.34.3747.
Texto completoOtt, William, Mikko Stenlund y Lai-Sang Young. "Memory loss for time-dependent dynamical systems". Mathematical Research Letters 16, n.º 3 (2009): 463–75. http://dx.doi.org/10.4310/mrl.2009.v16.n3.a7.
Texto completoTesis sobre el tema "Dynamical memory"
Liu, Yuxi. "Dynamical Activity Patterns of High-frequency Oscillations and Their Functional Roles in Neural Circuits". Thesis, University of Sydney, 2020. https://hdl.handle.net/2123/23236.
Texto completoKropff, Emilio. "Statistical and dynamical properties of large cortical network models: insights into semantic memory and language". Doctoral thesis, SISSA, 2007. http://hdl.handle.net/20.500.11767/4639.
Texto completoRehn, Martin. "Aspects of memory and representation in cortical computation". Doctoral thesis, KTH, Numerisk Analys och Datalogi, NADA, 2006. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-4161.
Texto completoIn this thesis I take a modular approach to cortical function. I investigate how the cerebral cortex may realise a number of basic computational tasks, within the framework of its generic architecture. I present novel mechanisms for certain assumed computational capabilities of the cerebral cortex, building on the established notions of attractor memory and sparse coding. A sparse binary coding network for generating efficient representations of sensory input is presented. It is demonstrated that this network model well reproduces the simple cell receptive field shapes seen in the primary visual cortex and that its representations are efficient with respect to storage in associative memory. I show how an autoassociative memory, augmented with dynamical synapses, can function as a general sequence learning network. I demonstrate how an abstract attractor memory system may be realised on the microcircuit level -- and how it may be analysed using tools similar to those used experimentally. I outline some predictions from the hypothesis that the macroscopic connectivity of the cortex is optimised for attractor memory function. I also discuss methodological aspects of modelling in computational neuroscience.
QC 20100916
Bhalala, Smita Ashesh 1966. "Modified Newton's method for supervised training of dynamical neural networks for applications in associative memory and nonlinear identification problems". Thesis, The University of Arizona, 1991. http://hdl.handle.net/10150/277969.
Texto completoBauer, Michael. "Dynamical characterization of Markov processes with varying order". Master's thesis, [S.l. : s.n.], 2009. http://nbn-resolving.de/urn:nbn:de:bsz:ch1-200900153.
Texto completoAbbs, Brandon Robert. "The temporal dynamics of auditory memory for static and dynamic sounds". Diss., University of Iowa, 2008. http://ir.uiowa.edu/etd/4.
Texto completoWilliams, Peter. "Dynamic memory for design". Thesis, The University of Sydney, 1995. https://hdl.handle.net/2123/27472.
Texto completoSperens, Martin. "Dynamic Memory Managment in C++". Thesis, Luleå tekniska universitet, Datavetenskap, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-76611.
Texto completoBisht, Pawas. "Disaster and the dynamics of memory". Thesis, Loughborough University, 2013. https://dspace.lboro.ac.uk/2134/14184.
Texto completoWu, Jiaming. "A modular dynamic Neuro-Synaptic platform for Spiking Neural Networks". Electronic Thesis or Diss., université Paris-Saclay, 2024. http://www.theses.fr/2024UPASP145.
Texto completoBiological and artificial neural networks share a fundamental computational unit: the neuron. These neurons are coupled by synapses, forming complex networks that enable various functions. Similarly, neuromorphic hardware, or more generally neuro-computers, also require two hardware elements: neurons and synapses. In this work, we introduce a bio-inspired spiking Neuro-Synaptic hardware unit, fully implemented with conventional electronic components. Our hardware is based on a textbook theoretical model of the spiking neuron, and its synaptic and membrane currents. The spiking neuron is fully analog and the various models that we introduced are defined by their hardware implementation. The neuron excitability is achieved through a memristive device made from off-the-shelf electronic components. Both synaptic and membrane currents feature tunable intensities and bio-mimetic dynamics, including excitatory and inhibitory currents. All model parameters are adjustable, allowing the system to be tuned to bio-compatible timescales, which is crucial in applications such as brain-machine interfaces. Building on these two modular units, we demonstrate various basic neural network motifs (or neuro-computing primitives) and show how to combine these fundamental motifs to implement more complex network functionalities, such as dynamical memories and central pattern generators. Our hardware design also carries potential extensions for integrating oxide-based memristors (which are widely studied in material science),or porting the design to very large-scale integration (VLSI) to implement large-scale networks. The Neuro-Synaptic unit can be considered as a building block for implementing spiking neural networks of arbitrary geometry. Its compact and modular design, as well as the wide availability of ordinary electronic components, makes our approach an attractive platform for building neural interfaces in medical devices, robotics, and artificial intelligence systems such as reservoir computing
Libros sobre el tema "Dynamical memory"
Irene, Dorfman, Fokas A. S. 1952- y Gelʹfand I. M, eds. Algebraic aspects of integrable systems: In memory of Irene Dorfman. Boston: Birkäuser, 1997.
Buscar texto completoBlokh, Alexander, Leonid Bunimovich, Paul Jung, Lex Oversteegen y Yakov Sinai, eds. Dynamical Systems, Ergodic Theory, and Probability: in Memory of Kolya Chernov. Providence, Rhode Island: American Mathematical Society, 2017. http://dx.doi.org/10.1090/conm/698.
Texto completoV, Anosov D., Stepin A. M y Bolibruch Andrej Andreevič, eds. Dynamical systems and related problems of geometry: Collected papers dedicated to the memory of academician Andrei Andreevich Bolibrukh. Moscow: Maik Nauka/Interperiodica, 2004.
Buscar texto completoMotorola. Dynamic RAMs & memory modules. 2a ed. Phoenix, AZ: Motorola, 1996.
Buscar texto completoKorostelina, Karina V. Memory Sites and Conflict Dynamics. London: Routledge, 2024. http://dx.doi.org/10.4324/9781003497332.
Texto completoMotorola. Dynamic RAMs and memory modules. Phoenix, AZ: Motorola, 1993.
Buscar texto completoAtienza Alonso, David, Stylianos Mamagkakis, Christophe Poucet, Miguel Peón-Quirós, Alexandros Bartzas, Francky Catthoor y Dimitrios Soudris. Dynamic Memory Management for Embedded Systems. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-10572-7.
Texto completoIncorporated, Advanced Micro Devices. Dynamic memory design data book/handbook. [Sunnyvale, CA]: Advanced Micro Devices, Inc., 1990.
Buscar texto completoDaconta, Michael C. C++ pointers and dynamic memory management. New York: Wiley, 1995.
Buscar texto completoFarkas, Keith I. Memory-system design considerations for dynamically-scheduled microprocessors. Ottawa: National Library of Canada = Bibliothèque nationale du Canada, 1997.
Buscar texto completoCapítulos de libros sobre el tema "Dynamical memory"
Pandolfi, Luciano. "Dynamical Algorithms for Identification Problems". En Systems with Persistent Memory, 283–329. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-80281-3_6.
Texto completoLiu, Jun y Andrew R. Teel. "Hybrid Dynamical Systems with Finite Memory". En Recent Results on Nonlinear Delay Control Systems, 261–73. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-18072-4_13.
Texto completoFung, C. C. Alan, K. Y. Michael Wong y Si Wu. "Dynamical Synapses Enhance Mobility, Memory and Decoding". En Advances in Cognitive Neurodynamics (III), 131–37. Dordrecht: Springer Netherlands, 2013. http://dx.doi.org/10.1007/978-94-007-4792-0_18.
Texto completoCosnard, Michel y Eric Goles Chacc. "Dynamical Properties of An Automaton with Memory". En Disordered Systems and Biological Organization, 63–66. Berlin, Heidelberg: Springer Berlin Heidelberg, 1986. http://dx.doi.org/10.1007/978-3-642-82657-3_7.
Texto completoBragov, A. M., L. A. Igumnov, A. Yu Konstantinov, A. K. Lomunov y A. I. Razov. "Dynamic Research of Shape Memory Alloys". En Dynamical Processes in Generalized Continua and Structures, 133–46. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-11665-1_7.
Texto completoGrasselli, Maurizio y Vittorino Pata. "Uniform Attractors of Nonautonomous Dynamical Systems with Memory". En Evolution Equations, Semigroups and Functional Analysis, 155–78. Basel: Birkhäuser Basel, 2002. http://dx.doi.org/10.1007/978-3-0348-8221-7_9.
Texto completoButaud, Pauline, Morvan Ouisse, Kévin Jaboviste, Vincent Placet y Emmanuel Foltête. "Dynamical Mechanical Thermal Analysis of Shape-Memory Polymers". En Advanced Structured Materials, 129–51. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-8574-2_6.
Texto completoSoares, O. D. D., A. L. V. S. Lage, A. O. S. Gomes y J. C. D. M. Santos. "Dynamical Digital Memory for Holography, Moiré and E.S.P.I." En Optical Metrology, 182–98. Dordrecht: Springer Netherlands, 1987. http://dx.doi.org/10.1007/978-94-009-3609-6_16.
Texto completoKoopmans, Matthijs. "Investigating the Long Memory Process in Daily High School Attendance Data". En Complex Dynamical Systems in Education, 299–321. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-27577-2_14.
Texto completoHayashi, Hatsuo y Motoharu Yoshida. "A Memory Model Based on Dynamical Behavior of the Hippocampus". En Lecture Notes in Computer Science, 967–73. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-540-30132-5_130.
Texto completoActas de conferencias sobre el tema "Dynamical memory"
Shen, Minghao y Gábor Orosz. "Memory Sketching for Data-driven Prediction of Dynamical Systems". En 2024 American Control Conference (ACC), 5388–93. IEEE, 2024. http://dx.doi.org/10.23919/acc60939.2024.10645035.
Texto completoLoveridge, Tegan, Kai Shinbrough y Virginia O. Lorenz. "Optimal Continuous Dynamical Decoupling in N-type Atomic Ensemble Quantum Memories". En CLEO: Fundamental Science, FM3R.4. Washington, D.C.: Optica Publishing Group, 2024. http://dx.doi.org/10.1364/cleo_fs.2024.fm3r.4.
Texto completoOtsuka, Kenju y Jyh-Long Chern. "Factorial Dynamic Pattern Memory in Globally Coupled Lasers". En Nonlinear Dynamics in Optical Systems. Washington, D.C.: Optica Publishing Group, 1992. http://dx.doi.org/10.1364/nldos.1992.thb1.
Texto completoGordon, Goren y Gershon Kurizki. "Dynamical control of noisy quantum memory channels". En Microtechnologies for the New Millennium, editado por Ali Serpengüzel, Gonçal Badenes y Giancarlo C. Righini. SPIE, 2007. http://dx.doi.org/10.1117/12.723952.
Texto completoDuda, Alexander M. y Stephen E. Levinson. "Nonlinear Dynamical Multi-Scale Model of Associative Memory". En 2010 International Conference on Machine Learning and Applications (ICMLA). IEEE, 2010. http://dx.doi.org/10.1109/icmla.2010.135.
Texto completoChung-Ming Ou y C. R. Ou. "Immune memory with associativity: Perspectives on dynamical systems". En 2012 IEEE Congress on Evolutionary Computation (CEC). IEEE, 2012. http://dx.doi.org/10.1109/cec.2012.6256646.
Texto completoAndrianov, Serge N. y Nikolai S. Edamenko. "Geometric integration of nonlinear dynamical systems". En 2015 International Conference "Stability and Control Processes" in Memory of V.I. Zubov (SCP). IEEE, 2015. http://dx.doi.org/10.1109/scp.2015.7342048.
Texto completoVakhnenko, Vyacheslav O. "Dynamical realization of end-point memory in consolidated materials". En INNOVATIONS IN NONLINEAR ACOUSTICS: ISNA17 - 17th International Symposium on Nonlinear Acoustics including the International Sonic Boom Forum. AIP, 2006. http://dx.doi.org/10.1063/1.2210332.
Texto completoAlonso-Sanz, Ramon. "Cellular automata and other discrete dynamical systems with memory". En 2012 International Conference on High Performance Computing & Simulation (HPCS). IEEE, 2012. http://dx.doi.org/10.1109/hpcsim.2012.6266914.
Texto completoDavydenko, Alexander A., Natalya V. Raspopova y Sergei S. Ustimenko. "On mass simulations of dynamical models of galaxy". En 2015 International Conference "Stability and Control Processes" in Memory of V.I. Zubov (SCP). IEEE, 2015. http://dx.doi.org/10.1109/scp.2015.7342053.
Texto completoInformes sobre el tema "Dynamical memory"
Beri, A. C. y T. F. George. Memory Effects in Dynamical Many-Body Systems: The Isomnesic (Constant-Memory) Approximation. Fort Belvoir, VA: Defense Technical Information Center, abril de 1985. http://dx.doi.org/10.21236/ada154160.
Texto completoPerdigão, Rui A. P. y Julia Hall. Spatiotemporal Causality and Predictability Beyond Recurrence Collapse in Complex Coevolutionary Systems. Meteoceanics, noviembre de 2020. http://dx.doi.org/10.46337/201111.
Texto completoAsea, Patrick K. y Michael J. Dueker. Non-Monotonic Long Memory Dynamics in Black-Market Exchange Rates. Federal Reserve Bank of St. Louis, 1995. http://dx.doi.org/10.20955/wp.1995.003.
Texto completoKim, Joohee y Marios C. Papaefthymiou. Block-Based Multi-Period Refresh for Energy Efficient Dynamic Memory. Fort Belvoir, VA: Defense Technical Information Center, abril de 2002. http://dx.doi.org/10.21236/ada414244.
Texto completoLagoudas, Dimitris C. Dynamic Behavior and Shock Absorption Properties of Porous Shape Memory Alloys. Fort Belvoir, VA: Defense Technical Information Center, julio de 2002. http://dx.doi.org/10.21236/ada403775.
Texto completoSaxena, A., A. R. Bishop, S. R. Shenoy, Y. Wu y T. Lookman. A model of shape memory materials with hierarchical twinning: Statics and dynamics. Office of Scientific and Technical Information (OSTI), julio de 1995. http://dx.doi.org/10.2172/102295.
Texto completoMayas, Magda. Creating with timbre. Norges Musikkhøgskole, agosto de 2018. http://dx.doi.org/10.22501/nmh-ar.686088.
Texto completoD`Azevedo, E. F. y C. H. Romine. A new shared-memory programming paradigm for molecular dynamics simulations on the Intel Paragon. Office of Scientific and Technical Information (OSTI), diciembre de 1994. http://dx.doi.org/10.2172/28414.
Texto completoD'Azevedo, E. F. A New Shared-Memory Programming Paradigm for Molecular Dynamics Simulations on the Intel Paragon. Office of Scientific and Technical Information (OSTI), enero de 1995. http://dx.doi.org/10.2172/814063.
Texto completoVineyard, Craig Michael y Stephen Joseph Verzi. A Case Study on Neural Inspired Dynamic Memory Management Strategies for High Performance Computing. Office of Scientific and Technical Information (OSTI), septiembre de 2017. http://dx.doi.org/10.2172/1396076.
Texto completo