Literatura académica sobre el tema "Dynamic treatment regimes"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Dynamic treatment regimes".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Dynamic treatment regimes"
Chakraborty, Bibhas y Susan A. Murphy. "Dynamic Treatment Regimes". Annual Review of Statistics and Its Application 1, n.º 1 (3 de enero de 2014): 447–64. http://dx.doi.org/10.1146/annurev-statistics-022513-115553.
Texto completoLavori, Philip W. y Ree Dawson. "Dynamic treatment regimes: practical design considerations". Clinical Trials 1, n.º 1 (febrero de 2004): 9–20. http://dx.doi.org/10.1191/1740774504cn002oa.
Texto completoMurphy, S. A. "Optimal dynamic treatment regimes". Journal of the Royal Statistical Society: Series B (Statistical Methodology) 65, n.º 2 (25 de abril de 2003): 331–55. http://dx.doi.org/10.1111/1467-9868.00389.
Texto completoZhang, Yichi, Eric B. Laber, Marie Davidian y Anastasios A. Tsiatis. "Interpretable Dynamic Treatment Regimes". Journal of the American Statistical Association 113, n.º 524 (2 de octubre de 2018): 1541–49. http://dx.doi.org/10.1080/01621459.2017.1345743.
Texto completoMoodie, Erica E. M., Thomas S. Richardson y David A. Stephens. "Demystifying Optimal Dynamic Treatment Regimes". Biometrics 63, n.º 2 (26 de febrero de 2007): 447–55. http://dx.doi.org/10.1111/j.1541-0420.2006.00686.x.
Texto completoZhao, Ying-Qi y Eric B. Laber. "Estimation of optimal dynamic treatment regimes". Clinical Trials: Journal of the Society for Clinical Trials 11, n.º 4 (28 de mayo de 2014): 400–407. http://dx.doi.org/10.1177/1740774514532570.
Texto completoLavori, Philip W. y Ree Dawson. "Dynamic treatment regimes: practical design considerations". Clinical Trials 1, n.º 1 (1 de febrero de 2004): 9–20. http://dx.doi.org/10.1191/1740774s04cn002oa.
Texto completoJohnson, Brent A. "Treatment-competing events in dynamic regimes". Lifetime Data Analysis 14, n.º 2 (9 de septiembre de 2007): 196–215. http://dx.doi.org/10.1007/s10985-007-9051-3.
Texto completoLizotte, Daniel J. y Arezoo Tahmasebi. "Prediction and tolerance intervals for dynamic treatment regimes". Statistical Methods in Medical Research 26, n.º 4 (11 de julio de 2017): 1611–29. http://dx.doi.org/10.1177/0962280217708662.
Texto completoMurphy, S. A. y D. Bingham. "Screening Experiments for Developing Dynamic Treatment Regimes". Journal of the American Statistical Association 104, n.º 485 (marzo de 2009): 391–408. http://dx.doi.org/10.1198/jasa.2009.0119.
Texto completoTesis sobre el tema "Dynamic treatment regimes"
Moodie, Erica E. M. "Inference for optimal dynamic treatment regimes /". Thesis, Connect to this title online; UW restricted, 2006. http://hdl.handle.net/1773/9605.
Texto completoMohamed, Nur Anisah. "Optimal dynamic treatment regimes : regret-regression method with myopic strategies". Thesis, University of Newcastle upon Tyne, 2013. http://hdl.handle.net/10443/2242.
Texto completoYazzourh, Sophia. "Apprentissage par renforcement et outcome-weighted learning bayésien pour la médecine de précision : Intégration de connaissances médicales dans les algorithmes de décision". Electronic Thesis or Diss., Université de Toulouse (2023-....), 2024. http://www.theses.fr/2024TLSES139.
Texto completoPrecision medicine aims to tailor treatments to the characteristics of each patient by relying on the frameworks of Individualized Treatment Regimes (ITR) and Dynamic Treatment Regimes (DTR). ITRs involve a single therapeutic decision, while DTRs allow for the adaptation of treatments over time through a sequence of decisions. For these approaches to be effective, they must be capable of handling complex data and integrating medical knowledge, which is essential for enabling realistic and safe clinical use. This work presents three research projects. First, a state-of-the-art review of methods for integrating medical knowledge into Reinforcement Learning (RL) models was conducted, considering the context of DTR and their specific constraints for application to observational data. Second, a probabilistic method for constructing rewards was developed for RL models, based on the preferences of medical experts. Illustrated by case studies on diabetes and cancer, this method generates data-driven rewards, avoiding the biases of "manual" construction and ensuring consistency with medical objectives in learning treatment recommendation strategies. Third, a Bayesian framework for the Outcome-Weighted Learning (OWL) method was proposed to quantify uncertainty in treatment recommendations, thereby enhancing the robustness of therapeutic decisions, and was illustrated through simulations studies. This contributions aim to improve the reliability of decision-making tools in precision medicine, by integrating medical knowledge into RL models on one hand, and proposing a Bayesian framework to quantify uncertainty in the OWL model on the other. This work is part of a global perspective of interdisciplinary collaboration, particularly among the fields of machine learning, medical sciences, and statistics
Young, Katherine W. "Dynamic treatment regimens for congestive heart failure". Thesis, Massachusetts Institute of Technology, 2020. https://hdl.handle.net/1721.1/129847.
Texto completoCataloged from student-submitted PDF of thesis.
Includes bibliographical references (pages 59-60).
Each year, millions of patients are hospitalized with a diagnosis of congestive heart failure (CHF). This condition is characterized by inadequate tissue perfusion resulting from an inability of the heart to provide enough blood to meet the body's metabolic demands. Patients with CHF remain at a greater risk for mortality and other adverse events. A primary symptom of CHF is fluid overload ("congestion"), which is routinely treated with diuretic therapy. However, choosing a diuretic therapy that maximizes the therapeutic effects while minimizing harmful side effects remains a challenge. In order to assess a patient's response to a particular therapy and guide future treatment decisions, clinicians monitor a number of variables including a patients' vital signs, glomerular filtration rate (GFR, a measure of renal function), and fluctuations in volume status. Nevertheless, these variables are typically insufficient by themselves to ensure that a given therapy is optimal for a given patient. Current guidelines for heart failure management were developed, in part, from large clinical trials. However, it is not always clear how to apply these observations to a given patient, whose clinical characteristics may differ significantly from those of the patients in the original studies. Therefore, there is a need for methods that identify patient-specific treatments that would allow physicians to construct therapies that are truly personalized. This work describes an approach for building dynamic treatment regimens (DTRs) - a set of patient-specific treatment rules that optimize an outcome of interest. The method uses artificial neural networks to suggest diuretic doses that will improve a patient's volume status while simultaneously minimizing harmful side effects on renal function. This body of work suggests the potential that DTRs have in developing personalized diuretic regimens to improve the clinical outcomes of CHF patients.
by Katherine W. Young.
M. Eng.
M.Eng. Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science
Zhao, Pan. "Topics in causal inférence and policy learning with applications to precision medicine". Electronic Thesis or Diss., Université de Montpellier (2022-....), 2024. http://www.theses.fr/2024UMONS029.
Texto completoCausality is a fundamental concept in science and philosophy, and with the increasing complexity of data collection and structure, statistics plays a pivotal role in inferring causes and effects. This thesis delves into advanced causal inference methods, with a focus on policy learning, instrumental variables (IV), and difference-in-differences (DiD) approaches.The IV and DiD methods are critical tools widely used by researchers in fields like epidemiology, medicine, biostatistics, econometrics, and quantitative social sciences. However, these methods often face challenges due to restrictive assumptions, such as the IV's requirement to have no direct effect on the outcome other than through the treatment, and the parallel trends assumption in DiD, which may be violated in the presence of unmeasured confounding.In that context, this thesis introduces an innovative instrumented DiD approach to policy learning, which combines these two natural experiments to relax some of the key assumptions of conventional IV and DiD methods. To the best of our knowledge, the thesis presents the first comprehensive study of policy learning under the DiD setting. The direct policy search approach is proposed to learn optimal policies, based on the conditional average treatment effect estimators using instrumented DiD. Novel identification results for optimal policies under unmeasured confounding are established. Moreover, a range of estimators, including a Wald estimator, inverse probability weighting (IPW) estimators, and semiparametric efficient and multiply robust estimators, are introduced. Theoretical guarantees for these multiply robust policy learning approaches are provided, including the cubic rate of convergence for parametric policies and valid statistical inference with flexible machine learning algorithms for nuisance parameter estimation. These methods are further extended to the panel data setup.The majority of causal inference methods in the literature heavily depend on three standard causal assumptions to identify causal effects and optimal policies. While there has been progress in relaxing the consistency and unconfoundedness assumptions, addressing the violations of the positivity assumption has seen limited advancements.In that context, this thesis presents a novel policy learning framework that does not rely on the positivity assumption, instead focusing on dynamic and stochastic policies that are practical for real-world applications. Incremental propensity score policies, which adjust propensity scores by individualized parameters, are proposed, requiring only the consistency and unconfoundedness assumptions. This approach enhances the concept of incremental intervention effects, adapting it to individualized treatment policy contexts, and employs semiparametric theory to develop efficient influence functions and debiased machine learning estimators. Methods to optimize policy by maximizing the value function under specific constraints are also introduced.Additionally, the optimal individualized treatment regime (ITR) learned from a source population may not generalize well to a target population due to covariate shifts. A transfer learning framework is proposed for ITR estimation in heterogeneous populations with right-censored survival data, which is common in clinical studies and motivated by medical applications. This framework characterizes the efficient influence function (EIF) and proposes a doubly robust estimator for the targeted value function, accommodating a broad class of survival distribution functionals. For a pre-specified class of ITRs, a cubic rate of convergence for the estimated parameter indexing the optimal ITR is established. The use of cross-fitting procedures ensures the consistency and asymptotic normality of the proposed optimal value estimator, even with flexible machine learning methods for nuisance parameter estimation
Rich, Benjamin. "Optimal dynamic treatment regime structural nested mean models: improving efficiency through diagnostics and re-weighting and application to adaptive individual dosing". Thesis, McGill University, 2013. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=114179.
Texto completoLes régimes de traitement dynamiques sont utilisés fréquemment en médecine. Nous les retrouvons, par exemple, dans le traitement des maladies chroniques. Alors que l'information obtenue chez un patient est récupérée dans le temps, il est souhaitable d'utiliser cette information afin de pouvoir faire des décisions de traitement qui sont adaptées à chaque patient, ou de pouvoir baser des décisions de traitements sur des observations qui évoluent. Les régimes de traitement dynamiques ont fait le sujet de travaux récents dans le domaine de l'inférence causale. Plus particulièrement, des méthodes semi-paramétriques ont été développées pour estimer, à partir de données non expérimentales, la règle de traitement ou la stratégie la meilleure ou optimale. Une de ces méthodes, proposée par Robins, est le modèle moyen structurel emboîté pour régime de traitement optimal dynamique (Optimal Dynamic Treatment Regime Structural Nested Mean Model : ODTR-SNMM) et la procédure g-estimation associée. Les suppostitions impliquées dans la modèlisation sont une préoccupation importante lors de l'application de cette méthodologie. Dans cette thèse, la vérification des suppositions de modélisation en utilisant les diagnostics résiduels et d'influence, normalement réalisée dans une analyse de régression traditionelle, est étendue à l'approche ODTR-SNMM. La méthodogie est évaluée en utilisant des données simulées, obtenues à partir de différents réglages de simulation. L'approche est aussi mise en application dans une étude d'arrêt d'allaitement. Par la suite, nous considérons des modèles partiellement mal spécifiés qui engendrent une estimation cohérente mais inefficace du paramètre d'intérêt en raison de la mal spécification du modèle de nuisance. En plus de la possibilité de traiter les mal spécifications partielles par les méthodes de diagnostic proposées, la repondération est considérée comme façon d'améliorer l'efficacité des estimateurs sous ces suppositions de modélisation. Une méthode de repondération basée sur l'influence des échantillons est proposée et étudiée par simulations. Finalement, nous considérons l'application de l'estimation des régimes de traitement dynamiques optimaux sur les stratégies de dosage adaptatifs pour les médicaments ayant une marge thérapeutique étroite et un dosage hautement variable. Utilisant l'anticoagulothérapie orale en exemple, nous concevons une simulation dans laquelle les données sont réalisées à partir de modèles pharmacocinétique (PK) et pharmacodynamique (PD) réalistes. Une technique de modélisation pour l'ODTR-SNMM avec dosage continu est proposée et appliquée aux données PK et PD simulées. Nous comparons la performance de plusieurs modèles utilisant différent réglages.
Daddi, Hammou Aoumeur. "Improved theoretical treatment of the dynamics of quarkonia in the quark gluon plasma : from semiclassical approximation to unified quantum master equations between the quantum Brownian and the quantum optical regimes". Electronic Thesis or Diss., Ecole nationale supérieure Mines-Télécom Atlantique Bretagne Pays de la Loire, 2024. http://www.theses.fr/2024IMTA0425.
Texto completoHeavy quarkonia are one of the probes of Quark-Gluon Plasma (QGP) formed in Ultra-Relativistic Heavy-Ion collisions (URHIC). Over the past decade, there has been an increasing interest in the use of open quantum systems (OQS) formalism in the study of the in- QGP quarkonia dynamics. In particular, it has been shown that the Lindblad equation can result in semiclassical equations, which have been previously employed by several phenomenological models. In the first part of this thesis, we investigate the validity of the semiclassical approximation, and its ability to describe certain non-trivial quantum effects and reach the appropriate thermal limit. The second part of the thesis aims to address some theoretical challenges associated with the use of the OQS formalism in the study of in-QGP quarkonia dynamics. In particular, due to the dynamical aspect of the QGP and its time-dependent temperature, the dynamics of in- QGP quarkonia covers two different regimes of the OQS formalism, which are described by two different master equations, namely, the quantum Brownian and optical regimes. We first explore the transition between the two regimes and elucidate the link between their respective master equations. Secondly, in order to describe the complete in-QGP quarkonia time evolution with a single master equation, we apply the universal Lindblad equation (ULE) to the QGP-quarkonia system and derive a set of coupled singlet-octet universal equations
Mohammadighavam, S. (Shahram). "Hydrological and hydraulic design of peatland drainage and water treatment systems for optimal control of diffuse pollution". Doctoral thesis, Oulun yliopisto, 2017. http://urn.fi/urn:isbn:9789526214511.
Texto completoTiivistelmä Turvemaiden ojitus metsätaloutta, maataloutta ja turvetuotantoa varten lisää orgaanisen aineen, kiintoaineineen ja ravinteiden huuhtoutumista alapuolisiin vesistöihin. Lisääntyneellä kuormituksella voi olla merkittäviä vaikutuksia vesiekosysteemeihin, minkä vuoksi turvetuotannon ympäristöluvissa vaaditaan valumavesien puhdistamista mm. laskeutusaltaiden ja pintavalutuskenttien avulla. Tiukentuneiden vesiensuojelumääräysten vuoksi tarvitaan uusia vesiensuojelumenetelmiä sekä tulee tehostaa jo käytössä olevien menetelmien toimintaa. Tämän työn tavoitteena on suositella uusia menetelmiä perustuen I) entistä tarkempaan hydrologiseen tietoon valunnasta ja vesistökuormituksesta ja II) kemiallisen vesienpuhdistuksen yhteydessä käytettävien laskeutusaltaiden hydrauliseen suunnitteluun. Tämä väitöstyö rakentuu maastossa ja laboratoriossa tehtyjen tutkimusten sekä hydrologisen/hydraulisen mallinnuksen varaan. Valuma-alueiden hydrologiaa tutkittiin ja mallinnettiin kolmella turvemetsäalueella ja kahdella turvetuotantoalueella Pohjois-Suomessa. Ojituksen hydrologisten vaikutusten arviointiin käytettiin DRAINMOD 6.1 ohjelmaa, jonka kalibrointia ja validointia varten kerättiin jatkuvatoimisilla antureilla aineistoa pohjaveden pinnankorkeuksista ja virtaamasta useiden vuosien ajalta. Mallin avulla voitiin pohjaveden pinnan vaihtelut kuvata yleisesti melko hyvin kaikilla tutkimusalueilla yksittäisistä sadanta-valuntatapahtuminen yli- tai aliarvioinneista huolimatta. Saadut tulokset osoittavat, että DRAINMOD 6.1 ohjelmalla voidaan riittävällä tarkkuudella simuloida pohjaveden pinnan vaihteluita kylmässä ilmastossa, kuten Pohjois-Suomessa, mutta malli ei soveltunut hyvin ojitusalueelta lähtevän valunnan tarkkaan määrittämiseen. Kemiallisen vesienpuhdistusrakenteiden optimointiin käytettiin COMSOL Multiphysics 5.1 ohjelmaa, jolla voidaan toteuttaa ja laskea veden virtauksia kolmessa dimensiossa (computational fluid dynamic, CFD, model). Mallilla arvioitiin kemikalointialtaan tuloaukon rakenteen vaikutuksia tyypillisesti kemikaloinnissa käytetyn allasrakenteen puhdistustehokkuuteen. Lisäksi mallilla mitoitettiin virtausesteitä optimaalisen sekoittumisolosuhteiden saamiseksi ja puhdistustehokkuuden parantamiseksi painovoimaisesti toimivissa flokkausaltaissa (hidas sekoitus). Saadut tulokset osoittavat, että laskeutusaltaiden tuloaukon rakenteella on merkittävä vaikutus kemikaloinnissa saavutettuun puhdistustehokkuuteen. Lisäksi työssä esitettiin optimaalisia virtausesteiden mitoituksia (geometria, esteiden välinen etäisyys, virtaussyvyys yms.) puhdistuksen kannalta parhaiden mahdollisten sekoitusolosuhteiden saavuttamiseksi
DELIU, NINA. "Reinforcement learning in modern biostatistics: benefits, challenges and new proposals". Doctoral thesis, 2021. http://hdl.handle.net/11573/1581572.
Texto completoLibros sobre el tema "Dynamic treatment regimes"
Tsiatis, Anastasios A., Marie Davidian, Shannon T. Holloway y Eric B. Laber. Dynamic Treatment Regimes. Boca Raton : Chapman and Hall/CRC, 2020. | Series: Chapman & Hall/CRC monographs on statistics and applied probability: Chapman and Hall/CRC, 2019. http://dx.doi.org/10.1201/9780429192692.
Texto completoChakraborty, Bibhas y Erica E. M. Moodie. Statistical Methods for Dynamic Treatment Regimes. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4614-7428-9.
Texto completoChakraborty, Bibhas. Statistical methods for dynamic treatment regimes: Reinforcement learning, causal inference, and personalized medicine. New York, NY: Springer, 2013.
Buscar texto completoTsiatis, Anastasios A. Dynamic Treatment Regimes. Taylor & Francis Group, 2021.
Buscar texto completoDavidian, Marie, Anastasios A. Tsiatis, Shannon T. Holloway y Eric Laber. Introduction to Dynamic Treatment Regimes. Taylor & Francis Group, 2019.
Buscar texto completoDavidian, Marie, Anastasios A. Tsiatis, Shannon T. Holloway y Eric B. Laber. Dynamic Treatment Regimes: Statistical Methods for Precision Medicine. Taylor & Francis Group, 2019.
Buscar texto completoDavidian, Marie, Anastasios A. Tsiatis, Shannon T. Holloway y Eric B. Laber. Dynamic Treatment Regimes: Statistical Methods for Precision Medicine. Taylor & Francis Group, 2019.
Buscar texto completoDavidian, Marie, Anastasios A. Tsiatis, Shannon T. Holloway y Eric B. Laber. Dynamic Treatment Regimes: Statistical Methods for Precision Medicine. Taylor & Francis Group, 2019.
Buscar texto completoMoodie, Erica E. M. y Bibhas Chakraborty. Statistical Methods for Dynamic Treatment Regimes: Reinforcement Learning, Causal Inference, and Personalized Medicine. Springer New York, 2015.
Buscar texto completoOrellana, Liliana del Carmen. Methodological challenges for the estimation of optimal dynamic treatment regimes from observational studies. 2007.
Buscar texto completoCapítulos de libros sobre el tema "Dynamic treatment regimes"
Qian, Min, Inbal Nahum-Shani y Susan A. Murphy. "Dynamic Treatment Regimes". En Modern Clinical Trial Analysis, 127–48. New York, NY: Springer New York, 2012. http://dx.doi.org/10.1007/978-1-4614-4322-3_5.
Texto completoTsiatis, Anastasios A., Marie Davidian, Shannon T. Holloway y Eric B. Laber. "Introduction". En Dynamic Treatment Regimes, 1–15. Boca Raton : Chapman and Hall/CRC, 2020. | Series: Chapman & Hall/CRC monographs on statistics and applied probability: Chapman and Hall/CRC, 2019. http://dx.doi.org/10.1201/9780429192692-1.
Texto completoTsiatis, Anastasios A., Marie Davidian, Shannon T. Holloway y Eric B. Laber. "Statistical Inference". En Dynamic Treatment Regimes, 515–69. Boca Raton : Chapman and Hall/CRC, 2020. | Series: Chapman & Hall/CRC monographs on statistics and applied probability: Chapman and Hall/CRC, 2019. http://dx.doi.org/10.1201/9780429192692-10.
Texto completoTsiatis, Anastasios A., Marie Davidian, Shannon T. Holloway y Eric B. Laber. "Additional Topics". En Dynamic Treatment Regimes, 571–76. Boca Raton : Chapman and Hall/CRC, 2020. | Series: Chapman & Hall/CRC monographs on statistics and applied probability: Chapman and Hall/CRC, 2019. http://dx.doi.org/10.1201/9780429192692-11.
Texto completoTsiatis, Anastasios A., Marie Davidian, Shannon T. Holloway y Eric B. Laber. "Preliminaries". En Dynamic Treatment Regimes, 17–50. Boca Raton : Chapman and Hall/CRC, 2020. | Series: Chapman & Hall/CRC monographs on statistics and applied probability: Chapman and Hall/CRC, 2019. http://dx.doi.org/10.1201/9780429192692-2.
Texto completoTsiatis, Anastasios A., Marie Davidian, Shannon T. Holloway y Eric B. Laber. "Single Decision Treatment Regimes: Fundamentals". En Dynamic Treatment Regimes, 51–97. Boca Raton : Chapman and Hall/CRC, 2020. | Series: Chapman & Hall/CRC monographs on statistics and applied probability: Chapman and Hall/CRC, 2019. http://dx.doi.org/10.1201/9780429192692-3.
Texto completoTsiatis, Anastasios A., Marie Davidian, Shannon T. Holloway y Eric B. Laber. "Single Decision Treatment Regimes: Additional Methods". En Dynamic Treatment Regimes, 99–124. Boca Raton : Chapman and Hall/CRC, 2020. | Series: Chapman & Hall/CRC monographs on statistics and applied probability: Chapman and Hall/CRC, 2019. http://dx.doi.org/10.1201/9780429192692-4.
Texto completoTsiatis, Anastasios A., Marie Davidian, Shannon T. Holloway y Eric B. Laber. "Multiple Decision Treatment Regimes: Overview". En Dynamic Treatment Regimes, 125–83. Boca Raton : Chapman and Hall/CRC, 2020. | Series: Chapman & Hall/CRC monographs on statistics and applied probability: Chapman and Hall/CRC, 2019. http://dx.doi.org/10.1201/9780429192692-5.
Texto completoTsiatis, Anastasios A., Marie Davidian, Shannon T. Holloway y Eric B. Laber. "Multiple Decision Treatment Regimes: Formal Framework". En Dynamic Treatment Regimes, 185–243. Boca Raton : Chapman and Hall/CRC, 2020. | Series: Chapman & Hall/CRC monographs on statistics and applied probability: Chapman and Hall/CRC, 2019. http://dx.doi.org/10.1201/9780429192692-6.
Texto completoTsiatis, Anastasios A., Marie Davidian, Shannon T. Holloway y Eric B. Laber. "Optimal Multiple Decision Treatment Regimes". En Dynamic Treatment Regimes, 245–323. Boca Raton : Chapman and Hall/CRC, 2020. | Series: Chapman & Hall/CRC monographs on statistics and applied probability: Chapman and Hall/CRC, 2019. http://dx.doi.org/10.1201/9780429192692-7.
Texto completoActas de conferencias sobre el tema "Dynamic treatment regimes"
Jain, Nishan y James Baeder. "Assessment of Turbulence Model Length Scales based on Hybrid RANS-LES Modeling of Unsteady Flow Over Airfoil". En Vertical Flight Society 72nd Annual Forum & Technology Display, 1–11. The Vertical Flight Society, 2016. http://dx.doi.org/10.4050/f-0072-2016-11393.
Texto completoWang, Lu, Wenchao Yu, Xiaofeng He, Wei Cheng, Martin Renqiang Ren, Wei Wang, Bo Zong, Haifeng Chen y Hongyuan Zha. "Adversarial Cooperative Imitation Learning for Dynamic Treatment Regimes✱". En WWW '20: The Web Conference 2020. New York, NY, USA: ACM, 2020. http://dx.doi.org/10.1145/3366423.3380248.
Texto completoJiang, Yushan, Wenchao Yu, Dongjin Song, Wei Cheng y Haifeng Chen. "Interpretable Skill Learning for Dynamic Treatment Regimes through Imitation". En 2023 57th Annual Conference on Information Sciences and Systems (CISS). IEEE, 2023. http://dx.doi.org/10.1109/ciss56502.2023.10089648.
Texto completoLiu, Ying, Brent Logan, Ning Liu, Zhiyuan Xu, Jian Tang y Yangzhi Wang. "Deep Reinforcement Learning for Dynamic Treatment Regimes on Medical Registry Data". En 2017 IEEE International Conference on Healthcare Informatics (ICHI). IEEE, 2017. http://dx.doi.org/10.1109/ichi.2017.45.
Texto completoYin, Changchang, Ruoqi Liu, Jeffrey Caterino y Ping Zhang. "Deconfounding Actor-Critic Network with Policy Adaptation for Dynamic Treatment Regimes". En KDD '22: The 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining. New York, NY, USA: ACM, 2022. http://dx.doi.org/10.1145/3534678.3539413.
Texto completoLi, Mingyi, Xiao Zhang, Haochao Ying, Yang Li, Xu Han y Dongxiao Yu. "Data Quality Aware Hierarchical Federated Reinforcement Learning Framework for Dynamic Treatment Regimes". En 2023 IEEE International Conference on Data Mining (ICDM). IEEE, 2023. http://dx.doi.org/10.1109/icdm58522.2023.00131.
Texto completoAndryushchenko, Aleksei Dmitrievitch. "Halite Precipitation in Brine Reservoirs: Prediction and Control by Numerical Model, Optimization of the Fresh Water Treatments and Well Production Regimes". En SPE Russian Petroleum Technology Conference. SPE, 2021. http://dx.doi.org/10.2118/206645-ms.
Texto completoMcDonald, Dale B. y Joseph O. Falade. "Parameter Identification in Ecological Systems via Discontinuous and Singular Control Regimes". En ASME 2012 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/imece2012-86063.
Texto completoAguiar, Janaina I. S., Antonio A. Pontifes, Jonathan Rogers y Amir Mahmoudkhani. "Selecting a Product for Wax Remediation: From Characterization of Field Wax Deposits to Improvement of Treatment Sustainability". En Offshore Technology Conference. OTC, 2021. http://dx.doi.org/10.4043/30951-ms.
Texto completoPacaldo, Renato S., Miraç Aydın y Randell Keith Amarille. "Soil CO2 Effluxes in Post-fire and Undisturbed Pinus nigra Forests: A Soil Moisture Manipulation Study". En 3rd International Congress on Engineering and Life Science. Prensip Publishing, 2023. http://dx.doi.org/10.61326/icelis.2023.41.
Texto completoInformes sobre el tema "Dynamic treatment regimes"
Neugebauer, Romain, Julie Schmittdiel, Oleg Sofrygin, Alyce Adams, Richard Grant y Mark van der Laan. Methods to Assess the Effect of Dynamic Treatment Regimens Using Electronic Health Records. Patient-Centered Outcomes Research Institute (PCORI), junio de 2020. http://dx.doi.org/10.25302/06.2020.me.140312506.
Texto completoBanin, Amos, Joseph Stucki y Joel Kostka. Redox Processes in Soils Irrigated with Reclaimed Sewage Effluents: Field Cycles and Basic Mechanism. United States Department of Agriculture, julio de 2004. http://dx.doi.org/10.32747/2004.7695870.bard.
Texto completoBobashev, Georgiy, John Holloway, Eric Solano y Boris Gutkin. A Control Theory Model of Smoking. RTI Press, junio de 2017. http://dx.doi.org/10.3768/rtipress.2017.op.0040.1706.
Texto completoAnderson, Donald M., Lorraine C. Backer, Keith Bouma-Gregson, Holly A. Bowers, V. Monica Bricelj, Lesley D’Anglada, Jonathan Deeds et al. Harmful Algal Research & Response: A National Environmental Science Strategy (HARRNESS), 2024-2034. Woods Hole Oceanographic Institution, julio de 2024. http://dx.doi.org/10.1575/1912/69773.
Texto completoOptional dynamic treatment regimes and partial welfare ordering. Cemmap, octubre de 2020. http://dx.doi.org/10.47004/wp.cem.2020.5020.
Texto completo