Literatura académica sobre el tema "Dynamic stochastic models"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Dynamic stochastic models".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Dynamic stochastic models"
Assaf, A. George, Mike G. Tsionas y Florian Kock. "Dynamic quantile stochastic frontier models". International Journal of Hospitality Management 89 (agosto de 2020): 102588. http://dx.doi.org/10.1016/j.ijhm.2020.102588.
Texto completoDror, Moshe y Warren Powell. "Stochastic and Dynamic Models in Transportation". Operations Research 41, n.º 1 (febrero de 1993): 11–14. http://dx.doi.org/10.1287/opre.41.1.11.
Texto completoReichman, David R. "On Stochastic Models of Dynamic Disorder†". Journal of Physical Chemistry B 110, n.º 38 (septiembre de 2006): 19061–65. http://dx.doi.org/10.1021/jp061992j.
Texto completoYano, Makoto. "Comparative statics in dynamic stochastic models". Journal of Mathematical Economics 18, n.º 2 (enero de 1989): 169–85. http://dx.doi.org/10.1016/0304-4068(89)90020-7.
Texto completoZilcha, I. "Efficiency in Stochastic Dynamic Economic Models". IFAC Proceedings Volumes 22, n.º 5 (junio de 1989): 357–61. http://dx.doi.org/10.1016/s1474-6670(17)53474-6.
Texto completoPopkov, Yu S. "Macrosystems Models of Dynamic Stochastic Networks". Automation and Remote Control 64, n.º 12 (diciembre de 2003): 1956–74. http://dx.doi.org/10.1023/b:aurc.0000008434.58605.1b.
Texto completoCreal, Drew D. y Ruey S. Tsay. "High dimensional dynamic stochastic copula models". Journal of Econometrics 189, n.º 2 (diciembre de 2015): 335–45. http://dx.doi.org/10.1016/j.jeconom.2015.03.027.
Texto completoFan, Ruzong, Bin Zhu y Yuedong Wang. "Stochastic dynamic models and Chebyshev splines". Canadian Journal of Statistics 42, n.º 4 (3 de noviembre de 2014): 610–34. http://dx.doi.org/10.1002/cjs.11233.
Texto completoTsionas, Efthymios G. "Inference in dynamic stochastic frontier models". Journal of Applied Econometrics 21, n.º 5 (2006): 669–76. http://dx.doi.org/10.1002/jae.862.
Texto completoPopkov, Yuri S., Alexey Yu Popkov, Yuri A. Dubnov y Dimitri Solomatine. "Entropy-Randomized Forecasting of Stochastic Dynamic Regression Models". Mathematics 8, n.º 7 (8 de julio de 2020): 1119. http://dx.doi.org/10.3390/math8071119.
Texto completoTesis sobre el tema "Dynamic stochastic models"
Balijepalli, Narasimha Chandrasekhar. "Stochastic process models for dynamic traffic assignment". Thesis, University of Leeds, 2007. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.436385.
Texto completoChu, Qin. "Dynamic and stochastic models for container allocation". Thesis, Massachusetts Institute of Technology, 1995. http://hdl.handle.net/1721.1/11742.
Texto completoCorneli, Marco. "Dynamic stochastic block models, clustering and segmentation in dynamic graphs". Thesis, Paris 1, 2017. http://www.theses.fr/2017PA01E012/document.
Texto completoThis thesis focuses on the statistical analysis of dynamic graphs, both defined in discrete or continuous time. We introduce a new extension of the stochastic block model (SBM) for dynamic graphs. The proposed approach, called dSBM, adopts non homogeneous Poisson processes to model the interaction times between pairs of nodes in dynamic graphs, either in discrete or continuous time. The intensity functions of the processes only depend on the node clusters, in a block modelling perspective. Moreover, all the intensity functions share some regularity properties on hidden time intervals that need to be estimated. A recent estimation algorithm for SBM, based on the greedy maximization of an exact criterion (exact ICL) is adopted for inference and model selection in dSBM. Moreover, an exact algorithm for change point detection in time series, the "pruned exact linear time" (PELT) method is extended to deal with dynamic graph data modelled via dSBM. The approach we propose can be used for change point analysis in graph data. Finally, a further extension of dSBM is developed to analyse dynamic net- works with textual edges (like social networks, for instance). In this context, the graph edges are associated with documents exchanged between the corresponding vertices. The textual content of the documents can provide additional information about the dynamic graph topological structure. The new model we propose is called "dynamic stochastic topic block model" (dSTBM).Graphs are mathematical structures very suitable to model interactions between objects or actors of interest. Several real networks such as communication networks, financial transaction networks, mobile telephone networks and social networks (Facebook, Linkedin, etc.) can be modelled via graphs. When observing a network, the time variable comes into play in two different ways: we can study the time dates at which the interactions occur and/or the interaction time spans. This thesis only focuses on the first time dimension and each interaction is assumed to be instantaneous, for simplicity. Hence, the network evolution is given by the interaction time dates only. In this framework, graphs can be used in two different ways to model networks. Discrete time […] Continuous time […]. In this thesis both these perspectives are adopted, alternatively. We consider new unsupervised methods to cluster the vertices of a graph into groups of homogeneous connection profiles. In this manuscript, the node groups are assumed to be time invariant to avoid possible identifiability issues. Moreover, the approaches that we propose aim to detect structural changes in the way the node clusters interact with each other. The building block of this thesis is the stochastic block model (SBM), a probabilistic approach initially used in social sciences. The standard SBM assumes that the nodes of a graph belong to hidden (disjoint) clusters and that the probability of observing an edge between two nodes only depends on their clusters. Since no further assumption is made on the connection probabilities, SBM is a very flexible model able to detect different network topologies (hubs, stars, communities, etc.)
Nori, Vijay S. "Algorithms for dynamic and stochastic logistics problems". Diss., Georgia Institute of Technology, 1999. http://hdl.handle.net/1853/24513.
Texto completoPaltrinieri, Federico. "Modeling temporal networks with dynamic stochastic block models". Master's thesis, Alma Mater Studiorum - Università di Bologna, 2019. http://amslaurea.unibo.it/18805/.
Texto completoChung, Kun-Jen. "Some topics in risk-sensitive stochastic dynamic models". Diss., Georgia Institute of Technology, 1985. http://hdl.handle.net/1853/28644.
Texto completoLoddo, Antonello. "Bayesian analysis of multivariate stochastic volatility and dynamic models". Diss., Columbia, Mo. : University of Missouri-Columbia, 2006. http://hdl.handle.net/10355/4359.
Texto completoThe entire dissertation/thesis text is included in the research.pdf file; the official abstract appears in the short.pdf file (which also appears in the research.pdf); a non-technical general description, or public abstract, appears in the public.pdf file. Title from title screen of research.pdf file viewed on (April 26, 2007) Vita. Includes bibliographical references.
Foliente, Greg C. "Stochastic dynamic response of wood structural systems". Diss., This resource online, 1993. http://scholar.lib.vt.edu/theses/available/etd-05042006-164535/.
Texto completoAhn, Kwangwon. "Dynamic stochastic general equilibrium models with money, default and collateral". Thesis, University of Oxford, 2013. http://ora.ox.ac.uk/objects/uuid:78317412-e13d-4495-9665-340e777ab7b2.
Texto completoCherepnev, Alexey [Verfasser]. "Stochastic foundations of dynamic trade and labor market models / Alexey Cherepnev". Mainz : Universitätsbibliothek der Johannes Gutenberg-Universität Mainz, 2015. http://d-nb.info/1225685508/34.
Texto completoLibros sobre el tema "Dynamic stochastic models"
Galindo Gil, Hamilton, Alexis Montecinos Bravo y Marco Antonio Ortiz Sosa. Dynamic Stochastic General Equilibrium Models. Cham: Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-58105-2.
Texto completoGong, Gang. Stochastic dynamic macroeconomics: Theory, numerics, and empirical evidence. New York: Oxford University Press, 2005.
Buscar texto completoChatterjee, Partha. Convergence in a stochastic dynamic Heckscher-Ohlin model. Ottawa: Bank of Canada, 2006.
Buscar texto completoPfann, Gerard A. Dynamic modelling of stochastic demand for manufacturing employment. Berlin: Springer-Verlag, 1990.
Buscar texto completoGong, Gang. Stochastic dynamic macroeconomics: Theory and empirical evidence. New York, NY: Oxford University Press, 2004.
Buscar texto completoC, Colander David, ed. Post Walrasian macroeconomics: Beyond the dynamic stochastic general equilibrium model. Cambridge: Cambridge University Press, 2006.
Buscar texto completoMerbis, Maarten Dirk. Optimal control for econometric models: An application of stochastic dynamic games. Amsterdam: Free University Press, 1986.
Buscar texto completoRansbotham, Sam. Sequential grid computing: Models and computational experiments. Bangalore: Indian Institute of Management Bangalore, 2009.
Buscar texto completoNijkamp, Peter. Spatial interaction and input-output models: A dynamic stochastic multi-objective framework. Amsterdam: Vrije Universiteit, Faculteit der Economische Wetenschappen en Econometrie, 1987.
Buscar texto completoauthor, Muler Nora, ed. Stochastic optimization in insurance: A dynamic programming approach. New York, NY: Springer, 2014.
Buscar texto completoCapítulos de libros sobre el tema "Dynamic stochastic models"
Boguslavskiy, Josif A. "Estimating the Parameters of Stochastic Models". En Dynamic Systems Models, 125–68. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-04036-3_7.
Texto completoZhang, Zhe George. "Dynamic Optimization in Stochastic Models". En Fundamentals of Stochastic Models, 449–514. Boca Raton: CRC Press, 2023. http://dx.doi.org/10.1201/9781003150060-10.
Texto completoGómez M., Guillermo L. "Stochastic control theory". En Dynamic Probabilistic Models and Social Structure, 401–19. Dordrecht: Springer Netherlands, 1992. http://dx.doi.org/10.1007/978-94-011-2524-6_9.
Texto completoBenaroya, Haym. "Random Eigenvalues and Structural Dynamic Models". En Stochastic Structural Dynamics 1, 11–32. Berlin, Heidelberg: Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/978-3-642-84531-4_2.
Texto completoChen, Huey-Kuo. "Stochastic/Dynamic User-Optimal Route Choice Model". En Dynamic Travel Choice Models, 229–53. Berlin, Heidelberg: Springer Berlin Heidelberg, 1999. http://dx.doi.org/10.1007/978-3-642-59980-4_12.
Texto completoRan, Bin y David Boyce. "Instantaneous Stochastic Dynamic Route Choice Models". En Modeling Dynamic Transportation Networks, 211–39. Berlin, Heidelberg: Springer Berlin Heidelberg, 1996. http://dx.doi.org/10.1007/978-3-642-80230-0_10.
Texto completoRan, Bin y David Boyce. "Ideal Stochastic Dynamic Route Choice Models". En Modeling Dynamic Transportation Networks, 181–209. Berlin, Heidelberg: Springer Berlin Heidelberg, 1996. http://dx.doi.org/10.1007/978-3-642-80230-0_9.
Texto completoRavishanker, Nalini, Balaji Raman y Refik Soyer. "Modeling Stochastic Volatility". En Dynamic Time Series Models using R-INLA, 197–204. Boca Raton: Chapman and Hall/CRC, 2022. http://dx.doi.org/10.1201/9781003134039-10.
Texto completoNijkamp, Peter y Aura Reggiani. "Dynamic and Stochastic Spatial Interaction Models". En Interaction, Evolution and Chaos in Space, 89–117. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/978-3-642-77509-3_5.
Texto completoTapiero, Charles S. "Dynamic Optimization". En Applied Stochastic Models and Control for Finance and Insurance, 237–74. Boston, MA: Springer US, 1998. http://dx.doi.org/10.1007/978-1-4615-5823-1_6.
Texto completoActas de conferencias sobre el tema "Dynamic stochastic models"
Zhao, Lang, Xueying Wang, Yizheng Li, Cheng Chen, Yawen Qian, Peng Du, Hongtao Xie, Chen Zhang y Zhiyu Wang. "Stochastic Dynamic Economic Dispatch Models of Ultra High Voltage AC-DC Hybrid Grids Based on Approximate Dynamic Programming". En 2024 4th International Conference on Energy, Power and Electrical Engineering (EPEE), 887–91. IEEE, 2024. https://doi.org/10.1109/epee63731.2024.10875448.
Texto completoRobinson, Jace y Derek Doran. "Seasonality in dynamic stochastic block models". En WI '17: International Conference on Web Intelligence 2017. New York, NY, USA: ACM, 2017. http://dx.doi.org/10.1145/3106426.3109424.
Texto completoRey, Francesc y Josep Sala-Alvarez. "Stochastic dynamic models in PHY abstraction". En 2013 Asilomar Conference on Signals, Systems and Computers. IEEE, 2013. http://dx.doi.org/10.1109/acssc.2013.6810577.
Texto completoGhorbanian, Parham, Subramanian Ramakrishnan y Hashem Ashrafiuon. "EEG Stochastic Nonlinear Oscillator Models for Alzheimer’s Disease". En ASME 2015 Dynamic Systems and Control Conference. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/dscc2015-9676.
Texto completoChemistruck, Heather y John B. Ferris. "Compact Models of Terrain Surfaces". En ASME 2010 Dynamic Systems and Control Conference. ASMEDC, 2010. http://dx.doi.org/10.1115/dscc2010-4037.
Texto completoAlexandre, Dolgui,. "Stochastic Dynamic Pricing Models of Monopoly Systems". En Information Control Problems in Manufacturing, editado por Bakhtadze, Natalia, chair Dolgui, Alexandre y Bakhtadze, Natalia. Elsevier, 2009. http://dx.doi.org/10.3182/20090603-3-ru-2001.00243.
Texto completoSion, R. y J. Tatemura. "Dynamic stochastic models for workflow response optimization". En IEEE International Conference on Web Services (ICWS'05). IEEE, 2005. http://dx.doi.org/10.1109/icws.2005.50.
Texto completoKashib, T. y S. Amanetu. "Dynamic Data Integration in Stochastic Reservoir Models". En Canadian International Petroleum Conference. Petroleum Society of Canada, 2003. http://dx.doi.org/10.2118/2003-091.
Texto completoEliasi, Parisa A. y Sundeep Rangan. "Stochastic dynamic channel models for millimeter cellular systems". En 2015 IEEE 6th International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP). IEEE, 2015. http://dx.doi.org/10.1109/camsap.2015.7383773.
Texto completoKneser, R. y V. Steinbiss. "On the dynamic adaptation of stochastic language models". En Proceedings of ICASSP '93. IEEE, 1993. http://dx.doi.org/10.1109/icassp.1993.319375.
Texto completoInformes sobre el tema "Dynamic stochastic models"
Fernandez-Villaverde, Jesus, Pablo Guerrón-Quintana y Juan Rubio-Ramírez. Estimating Dynamic Equilibrium Models with Stochastic Volatility. Cambridge, MA: National Bureau of Economic Research, septiembre de 2012. http://dx.doi.org/10.3386/w18399.
Texto completoPitarka, A. Testing Dynamic Earthquake Rupture Models Generated With Stochastic Stress Drop. Office of Scientific and Technical Information (OSTI), noviembre de 2018. http://dx.doi.org/10.2172/1490953.
Texto completoJudd, Kenneth, Lilia Maliar y Serguei Maliar. How to Solve Dynamic Stochastic Models Computing Expectations Just Once. Cambridge, MA: National Bureau of Economic Research, septiembre de 2011. http://dx.doi.org/10.3386/w17418.
Texto completoJudd, Kenneth, Lilia Maliar y Serguei Maliar. Numerically Stable Stochastic Simulation Approaches for Solving Dynamic Economic Models. Cambridge, MA: National Bureau of Economic Research, agosto de 2009. http://dx.doi.org/10.3386/w15296.
Texto completoGhil, Michael, Mickael D. Chekroun, Dmitri Kondrashov, Michael K. Tippett, Andrew Robertson, Suzana J. Camargo, Mark Cane et al. Extended-Range Prediction with Low-Dimensional, Stochastic-Dynamic Models: A Data-driven Approach. Fort Belvoir, VA: Defense Technical Information Center, septiembre de 2012. http://dx.doi.org/10.21236/ada572180.
Texto completoGelain, Paolo y Pierlauro Lopez. A DSGE Model Including Trend Information and Regime Switching at the ZLB. Federal Reserve Bank of Cleveland, diciembre de 2023. http://dx.doi.org/10.26509/frbc-wp-202335.
Texto completoChen, Xin, Yanfeng Ouyang, Ebrahim Arian, Haolin Yang y Xingyu Ba. Modeling and Testing Autonomous and Shared Multimodal Mobility Services for Low-Density Rural Areas. Illinois Center for Transportation, agosto de 2022. http://dx.doi.org/10.36501/0197-9191/22-013.
Texto completoMalin, Benjamin, Dirk Krueger y Felix Kubler. Computing Stochastic Dynamic Economic Models with a Large Number of State Variables: A Description and Application of a Smolyak-Collocation Method. Cambridge, MA: National Bureau of Economic Research, octubre de 2007. http://dx.doi.org/10.3386/t0345.
Texto completoMalin, Benjamin, Dirk Krueger y Felix Kubler. Computing Stochastic Dynamic Economic Models with a Large Number of State Variables: A Description and Application of a Smolyak-Collocation Method. Cambridge, MA: National Bureau of Economic Research, octubre de 2007. http://dx.doi.org/10.3386/w13517.
Texto completoFernández-Villaverde, Jesús, Galo Nuño y Jesse Perla. Taming the curse of dimensionality: quantitative economics with deep learning. Madrid: Banco de España, noviembre de 2024. http://dx.doi.org/10.53479/38233.
Texto completo