Libros sobre el tema "Dynamic machine learning"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte los 50 mejores mejores libros para su investigación sobre el tema "Dynamic machine learning".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Explore libros sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.
Gultekin, San. Dynamic Machine Learning with Least Square Objectives. [New York, N.Y.?]: [publisher not identified], 2019.
Buscar texto completoBennaceur, Amel, Reiner Hähnle y Karl Meinke, eds. Machine Learning for Dynamic Software Analysis: Potentials and Limits. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-96562-8.
Texto completoIEEE, International Symposium on Approximate Dynamic Programming and Reinforcement Learning (1st 2007 Honolulu Hawaii). 2007 IEEE Symposium on Approximate Dynamic Programming and Reinforcement Learning: Honolulu, HI, 1-5 April 2007. Piscataway, NJ: IEEE, 2007.
Buscar texto completoHinders, Mark K. Intelligent Feature Selection for Machine Learning Using the Dynamic Wavelet Fingerprint. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-49395-0.
Texto completoIEEE International Symposium on Approximate Dynamic Programming and Reinforcement Learning (1st 2007 Honolulu, Hawaii). 2007 IEEE Symposium on Approximate Dynamic Programming and Reinforcement Learning: Honolulu, HI, 1-5 April 2007. Piscataway, NJ: IEEE, 2007.
Buscar texto completoIEEE International Symposium on Approximate Dynamic Programming and Reinforcement Learning (1st 2007 Honolulu, Hawaii). 2007 IEEE Symposium on Approximate Dynamic Programming and Reinforcement Learning: Honolulu, HI, 1-5 April 2007. Piscataway, NJ: IEEE, 2007.
Buscar texto completoAchmad, Widodo, ed. Introduction of intelligent machine fault diagnosis and prognosis. New York: Nova Science Publishers, 2009.
Buscar texto completoRussell, David W. The BOXES Methodology: Black Box Dynamic Control. London: Springer London, 2012.
Buscar texto completoHayes-Roth, Barbara. An architecture for adaptive intelligent systems. Stanford, Calif: Stanford University, Dept. of Computer Science, 1993.
Buscar texto completoDuriez, Thomas, Steven L. Brunton y Bernd R. Noack. Machine Learning Control – Taming Nonlinear Dynamics and Turbulence. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-40624-4.
Texto completoChiroma, Haruna, Shafi’i M. Abdulhamid, Philippe Fournier-Viger y Nuno M. Garcia, eds. Machine Learning and Data Mining for Emerging Trend in Cyber Dynamics. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-66288-2.
Texto completoLeigh, J. R. Control Theory. 2a ed. Stevenage: IET, 2004.
Buscar texto completoLi, Fanzhang, Li Zhang y Zhao Zhang. Dynamic Fuzzy Machine Learning. de Gruyter GmbH, Walter, 2017.
Buscar texto completoLi, Fanzhang, Li Zhang y Zhao Zhang. Dynamic Fuzzy Machine Learning. de Gruyter GmbH, Walter, 2017.
Buscar texto completoLi, Fanzhang, Li Zhang y Zhao Zhang. Dynamic Fuzzy Machine Learning. de Gruyter GmbH, Walter, 2017.
Buscar texto completoMuneesawang, Paisarn, Ling Guan, Matthew Kyan y Kambiz Jarrah. Unsupervised Learning: A Dynamic Approach. Wiley & Sons, Incorporated, John, 2014.
Buscar texto completoMuneesawang, Paisarn, Ling Guan, Matthew Kyan y Kambiz Jarrah. Unsupervised Learning: A Dynamic Approach. Wiley & Sons, Incorporated, John, 2014.
Buscar texto completoJ, Walsh Thomas, Jonathan P. How, Alborz Geramifard, Stefanie Tellex y Girish Chowdhary. Tutorial on Linear Function Approximators for Dynamic Programming and Reinforcement Learning. Now Publishers, 2013.
Buscar texto completoMuneesawang, Paisarn, Ling Guan, Matthew Kyan y Kambiz Jarrah. Unervised Learning Via Self-Organization: A Dynamic Approach. Wiley & Sons, Incorporated, John, 2014.
Buscar texto completoLearning from Data Streams in Dynamic Environments. Springer, 2015.
Buscar texto completoMachine Learning for Dynamic Software Analysis : Potentials and Limits: International Dagstuhl Seminar 16172, Dagstuhl Castle, Germany, April 24-27, ... Papers. Springer, 2018.
Buscar texto completoZeng, Tao, Tao Huang y Chuan Lu, eds. Machine Learning Advanced Dynamic Omics Data Analysis for Precision Medicine. Frontiers Media SA, 2020. http://dx.doi.org/10.3389/978-2-88963-554-2.
Texto completoPowell, Warren B., Andrew G. Barto, Don Wunsch y Jennie Si. Handbook of Learning and Approximate Dynamic Programming. Wiley & Sons, Incorporated, John, 2012.
Buscar texto completoHinders, Mark K. Intelligent Feature Selection for Machine Learning Using the Dynamic Wavelet Fingerprint. Springer International Publishing AG, 2021.
Buscar texto completoHinders, Mark K. Intelligent Feature Selection for Machine Learning Using the Dynamic Wavelet Fingerprint. Springer International Publishing AG, 2020.
Buscar texto completoLewis, Frank L. y Derong Liu. Reinforcement Learning and Approximate Dynamic Programming for Feedback Control. Wiley & Sons, Incorporated, John, 2013.
Buscar texto completoLewis, Frank L. y Derong Liu. Reinforcement Learning and Approximate Dynamic Programming for Feedback Control. Wiley & Sons, Incorporated, John, 2013.
Buscar texto completoLewis, Frank L. y Derong Liu. Reinforcement Learning and Approximate Dynamic Programming for Feedback Control. Wiley & Sons, Incorporated, John, 2013.
Buscar texto completoHeo, Wookjae. Demand for Life Insurance: Dynamic Ecological Systemic Theory Using Machine Learning Techniques. Springer International Publishing AG, 2020.
Buscar texto completoHeo, Wookjae. Demand for Life Insurance: Dynamic Ecological Systemic Theory Using Machine Learning Techniques. Springer International Publishing AG, 2019.
Buscar texto completoR Machine Learning by Example: Understand the Fundamentals of Machine Learning with R and Build Your Own Dynamic Algorithms to Tackle Complicated Real-World Problems Successfully. de Gruyter GmbH, Walter, 2016.
Buscar texto completoRussell, David W. The BOXES Methodology: Black Box Dynamic Control. Springer, 2014.
Buscar texto completoThe BOXES Methodology: Black Box Dynamic Control. Springer, 2012.
Buscar texto completoPickreign, Cynthia J. Riggle: A program for the dynamic conceptual time series analysis of hypervariate data and its application to ecotoxicology. 1995.
Buscar texto completoAmunategui, Manuel. Python Web Work - Online Presence Powerhouse: Grow Audiences, Use Html5 Templates, Serve Dynamic Content, Build Machine Learning Web Apps, Conquer the World. Independently Published, 2020.
Buscar texto completoSalin, Sandra y Cathy Hampton, eds. Innovative language teaching and learning at university: facilitating transition from and to higher education. Research-publishing.net, 2022. http://dx.doi.org/10.14705/rpnet.2022.56.9782490057986.
Texto completoNoack, Bernd R., Steven L. Brunton y Thomas Duriez. Machine Learning Control – Taming Nonlinear Dynamics and Turbulence. Springer, 2018.
Buscar texto completoNoack, Bernd R., Steven L. Brunton y Thomas Duriez. Machine Learning Control - Taming Nonlinear Dynamics and Turbulence. Springer London, Limited, 2016.
Buscar texto completoNoack, Bernd R., Steven L. Brunton y Thomas Duriez. Machine Learning Control – Taming Nonlinear Dynamics and Turbulence. Springer, 2016.
Buscar texto completoDecherchi, Sergio, Andrea Cavalli, Pratyush Tiwary y Francesca Grisoni, eds. Molecular Dynamics and Machine Learning in Drug Discovery. Frontiers Media SA, 2021. http://dx.doi.org/10.3389/978-2-88966-863-2.
Texto completoIordache, Octavian. Self-Evolvable Systems: Machine Learning in Social Media. Springer Berlin / Heidelberg, 2014.
Buscar texto completoIordache, Octavian. Self-Evolvable Systems: Machine Learning in Social Media. Springer, 2012.
Buscar texto completoHanson, Stephen José, Michael J. Kearns, Thomas Petsche y Ronald L. Rivest, eds. Computational Learning Theory and Natural Learning Systems, Volume 2. The MIT Press, 1994. http://dx.doi.org/10.7551/mitpress/2029.001.0001.
Texto completoBansal, Vinnie y Aurelien Clere. Machine Learning with Dynamics 365 and Power Platform: The Ultimate Guide to Learning and Applying Machine Learning and Predictive Analytics. Wiley & Sons, Limited, John, 2022.
Buscar texto completoUltimate Machine Learning Data Science: Statistical Methods for Building Trading Strategies to Machine Learning, Dynamical Systems, and Control for Beginners. Independently Published, 2022.
Buscar texto completoKutz, J. Nathan y Steven L. Brunton. Data-Driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press, 2019.
Buscar texto completoKutz, J. Nathan y Steven L. Brunton. Data-Driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press, 2022.
Buscar texto completoKutz, J. Nathan y Steven L. Brunton. Data-Driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press, 2019.
Buscar texto completoData-Driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press, 2022.
Buscar texto completoMitra, Bivas, Fakhteh Ghanbarnejad, Rishiraj Saha Roy, Fariba Karimi y Jean-Charles Delvenne. Dynamics On and Of Complex Networks III: Machine Learning and Statistical Physics Approaches. Springer, 2019.
Buscar texto completo