Literatura académica sobre el tema "Dualité de Pontryagin"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Dualité de Pontryagin".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Dualité de Pontryagin"
Lim, Johnny. "Analytic Pontryagin duality". Journal of Geometry and Physics 145 (noviembre de 2019): 103483. http://dx.doi.org/10.1016/j.geomphys.2019.103483.
Texto completoChasco, M. J. y E. Mart�n-Peinador. "Binz-Butzmann duality versus Pontryagin duality". Archiv der Mathematik 63, n.º 3 (septiembre de 1994): 264–70. http://dx.doi.org/10.1007/bf01189829.
Texto completoBanaszczyk, Wojciech, María Jesús Chasco y Elena Martin-Peinador. "Open subgroups and Pontryagin duality". Mathematische Zeitschrift 215, n.º 1 (enero de 1994): 195–204. http://dx.doi.org/10.1007/bf02571709.
Texto completoChasco, M. J. "Pontryagin duality for metrizable groups". Archiv der Mathematik 70, n.º 1 (1 de enero de 1998): 22–28. http://dx.doi.org/10.1007/s000130050160.
Texto completoShtern, A. I. "Duality between compactness and discreteness beyond pontryagin duality". Proceedings of the Steklov Institute of Mathematics 271, n.º 1 (diciembre de 2010): 212–27. http://dx.doi.org/10.1134/s0081543810040164.
Texto completoMelnikov, Alexander. "Computable topological groups and Pontryagin duality". Transactions of the American Mathematical Society 370, n.º 12 (3 de mayo de 2018): 8709–37. http://dx.doi.org/10.1090/tran/7355.
Texto completoHern�ndez, Salvador. "Pontryagin duality for topological Abelian groups". Mathematische Zeitschrift 238, n.º 3 (1 de noviembre de 2001): 493–503. http://dx.doi.org/10.1007/s002090100263.
Texto completoVan Daele, A. y Shuanhong Wang. "Pontryagin duality for bornological quantum hypergroups". manuscripta mathematica 131, n.º 1-2 (18 de noviembre de 2009): 247–63. http://dx.doi.org/10.1007/s00229-009-0318-8.
Texto completoHernández, Salvador y Vladimir Uspenskij. "Pontryagin Duality for Spaces of Continuous Functions". Journal of Mathematical Analysis and Applications 242, n.º 2 (febrero de 2000): 135–44. http://dx.doi.org/10.1006/jmaa.1999.6627.
Texto completoGabriyelyan, S. S. "Groups of quasi-invariance and the Pontryagin duality". Topology and its Applications 157, n.º 18 (diciembre de 2010): 2786–802. http://dx.doi.org/10.1016/j.topol.2010.08.018.
Texto completoTesis sobre el tema "Dualité de Pontryagin"
Artusa, Marco. "Sur des théorèmes de dualité pour la cohomologie condensée du groupe de Weil d'un corps p-adique". Electronic Thesis or Diss., Bordeaux, 2024. http://www.theses.fr/2024BORD0228.
Texto completoThe goal of this thesis is twofold. First, we build a topological cohomology theory for the Weil group of p-adic fields. Secondly, we use this theory to prove duality theorems for such fields, which manifest as Pontryagin duality between locally compact abelian groups. These results improve existing duality theorems and give them a topological flavour. Condensed Mathematics allow us to reach these objectives, providing a framework where it is possible to do algebra with topological objects. We define and study a cohomology theory for condensed groups and pro-condensed groups, and we apply it to the Weil group of a p-adic field, considered as a pro-condensed group. The resulting cohomology groups are proved to be locally compact abelian groups of finite ranks in some special cases. This allows us to enlarge the local Tate duality to a more general category of non-necessarily discrete coefficients, where it takes the form of a Pontryagin duality between locally compact abelian groups. In the last part of the thesis, we use the same framework to recover a Weil-version of the Tate duality with coefficients in abelian varieties and more generally in 1-motives, expressing those dualities as perfect pairings between condensed abelian groups. To do this, we associate to every algebraic group, resp. 1-motive, a condensed abelian group, resp. a complex of condensed abelian groups, with an action of the (pro-condensed) Weil group. We call this association the condensed Weil-´etale realisation. We show the existence of a condensed Poincar´e pairing for abelian varieties and we prove a condensed-Weil version of the Tate duality with coefficients in abelian varieties, which improves the correspondent result of Karpuk. Lastly, we exhibit a condensed Poincar´e pairing for 1-motives. We show that this pairing is compatible with the weight filtration and we prove a duality theorem with coefficients in 1-motives, which improves a result of Harari-Szamuely
Del, Gatto Davide. "Analisi di Fourier sui Gruppi". Bachelor's thesis, Alma Mater Studiorum - Università di Bologna, 2019. http://amslaurea.unibo.it/18784/.
Texto completoChis, Cristina. "Bounded sets in topological groups". Doctoral thesis, Universitat Jaume I, 2010. http://hdl.handle.net/10803/10502.
Texto completoIn the second part of the paper, we apply duality methods in order to obtain estimations of the size of a local base for an important class of groups. This translation, which has been widely exhibited in the Pontryagin-van Kampen duality theory of locally compact abelian groups, is often very relevant and has been extended by many authors to more general classes of topological groups. In this work we follow basically the pattern and terminology given by Vilenkin in 1998.
Lim, Johnny. "Analytic Pontryagin Duality". Thesis, 2019. http://hdl.handle.net/2440/124554.
Texto completoThesis (Ph.D.) -- University of Adelaide, School of Mathematical Sciences, 2019
Černohorská, Eva. "Homotopické struktury v algebře, geometrii a matematické fyzice". Master's thesis, 2011. http://www.nusl.cz/ntk/nusl-313715.
Texto completoLibros sobre el tema "Dualité de Pontryagin"
Außenhofer, Lydia, Dikran Dikranjan y Anna Giordano Bruno. Topological Groups and the Pontryagin-van Kampen Duality. De Gruyter, 2021. http://dx.doi.org/10.1515/9783110654936.
Texto completoDikranjan, Dikran, Anna Giordano Bruno y Lydia Außenhofer. Topological Groups and the Pontryagin-Van Kampen Duality: An Introduction. de Gruyter GmbH, Walter, 2021.
Buscar texto completoStralka, A., M. Mislove y K. H. Hofmann. Pontryagin Duality of Compact o-Dimensional Semilattices and Its Applications. Springer London, Limited, 2006.
Buscar texto completoDikranjan, Dikran, Anna Giordano Bruno y Lydia Außenhofer. Topological Groups and the Pontryagin-Van Kampen Duality: An Introduction. de Gruyter GmbH, Walter, 2021.
Buscar texto completoDikranjan, Dikran, Anna Giordano Bruno y Lydia Außenhofer. Topological Groups and the Pontryagin-Van Kampen Duality: An Introduction. de Gruyter GmbH, Walter, 2021.
Buscar texto completoMorris, Sidney A. Pontryagin Duality and the Structure of Locally Compact Abelian Groups. Cambridge University Press, 2009.
Buscar texto completoMorris, Sidney A. Pontryagin Duality and the Structure of Locally Compact Abelian Groups. Cambridge University Press, 2011.
Buscar texto completoZhang, Xu y Qi Lü. General Pontryagin-Type Stochastic Maximum Principle and Backward Stochastic Evolution Equations in Infinite Dimensions. Springer London, Limited, 2014.
Buscar texto completoGeneral Pontryagin-Type Stochastic Maximum Principle and Backward Stochastic Evolution Equations in Infinite Dimensions. Springer, 2014.
Buscar texto completoCapítulos de libros sobre el tema "Dualité de Pontryagin"
Banaszczyk, Wojciech. "Pontryagin duality". En Lecture Notes in Mathematics, 132–67. Berlin, Heidelberg: Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/bfb0089152.
Texto completoVourdas, Apostolos. "Partial Orders and Pontryagin Duality". En Quantum Science and Technology, 7–10. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-59495-8_2.
Texto completoJayakumar, S., S. S. Iyengar y Naveen Kumar Chaudhary. "Sensor Fusion and Pontryagin Duality". En Lecture Notes in Electrical Engineering, 123–37. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-5091-1_10.
Texto completoLisica, Yu T. "The alexander-pontryagin duality theorem for coherent homology and cohomology with coefficients in sheaves of modules". En Lecture Notes in Mathematics, 148–63. Berlin, Heidelberg: Springer Berlin Heidelberg, 1987. http://dx.doi.org/10.1007/bfb0081425.
Texto completoGamkrelidze, R. V. "Topological Duality Theorems". En L. S. Pontryagin Selected Works, 347–74. CRC Press, 2019. http://dx.doi.org/10.1201/9780367813758-25.
Texto completo"13 The Pontryagin-van Kampen duality". En Topological Groups and the Pontryagin-van Kampen Duality, 201–28. De Gruyter, 2021. http://dx.doi.org/10.1515/9783110654936-013.
Texto completoGamkrelidze, R. V. "The General Topological Theorem of Duality for Closed Sets *". En L. S. Pontryagin Selected Works, 137–50. CRC Press, 2019. http://dx.doi.org/10.1201/9780367813758-9.
Texto completo"14 Applications of the duality theorem". En Topological Groups and the Pontryagin-van Kampen Duality, 229–62. De Gruyter, 2021. http://dx.doi.org/10.1515/9783110654936-014.
Texto completo"7 Completeness and completion". En Topological Groups and the Pontryagin-van Kampen Duality, 97–114. De Gruyter, 2021. http://dx.doi.org/10.1515/9783110654936-007.
Texto completo"11 The Følner theorem". En Topological Groups and the Pontryagin-van Kampen Duality, 159–86. De Gruyter, 2021. http://dx.doi.org/10.1515/9783110654936-011.
Texto completoActas de conferencias sobre el tema "Dualité de Pontryagin"
Akbarov, Sergei S. "Pontryagin duality and topological algebras". En Topological Algebras, their Applications, and Related Topics. Warsaw: Institute of Mathematics Polish Academy of Sciences, 2005. http://dx.doi.org/10.4064/bc67-0-5.
Texto completoGauthier, Jean Paul. "Hypoelliptic diffusion, Chu duality and human vision". En International Conference "Optimal Control and Differential Games" dedicated to the 110th anniversary of L. S. Pontryagin. Moscow: Steklov Mathematical Institute, 2018. http://dx.doi.org/10.4213/proc22841.
Texto completo