Artículos de revistas sobre el tema "Drug Side Effect Prediction"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte los 50 mejores artículos de revistas para su investigación sobre el tema "Drug Side Effect Prediction".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Explore artículos de revistas sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.
Hu, Baofang, Hong Wang y Zhenmei Yu. "Drug Side-Effect Prediction Via Random Walk on the Signed Heterogeneous Drug Network". Molecules 24, n.º 20 (11 de octubre de 2019): 3668. http://dx.doi.org/10.3390/molecules24203668.
Texto completoSeo, Sukyung, Taekeon Lee, Mi-hyun Kim y Youngmi Yoon. "Prediction of Side Effects Using Comprehensive Similarity Measures". BioMed Research International 2020 (28 de febrero de 2020): 1–10. http://dx.doi.org/10.1155/2020/1357630.
Texto completoKim, Jinwoo y Miyoung Shin. "A Knowledge Graph Embedding Approach for Polypharmacy Side Effects Prediction". Applied Sciences 13, n.º 5 (22 de febrero de 2023): 2842. http://dx.doi.org/10.3390/app13052842.
Texto completoArshed, Muhammad Asad, Shahzad Mumtaz, Omer Riaz, Waqas Sharif y Saima Abdullah. "A Deep Learning Framework for Multi Drug Side Effects Prediction with Drug Chemical Substructure". Vol 4 Issue 1 4, n.º 1 (22 de enero de 2022): 19–31. http://dx.doi.org/10.33411/ijist/2022040102.
Texto completoMohd Ali, Yousoff Effendy, Kiam Heong Kwa y Kurunathan Ratnavelu. "Predicting new drug indications from network analysis". International Journal of Modern Physics C 28, n.º 09 (septiembre de 2017): 1750118. http://dx.doi.org/10.1142/s0129183117501182.
Texto completoZhao, Xian, Lei Chen, Zi-Han Guo y Tao Liu. "Predicting Drug Side Effects with Compact Integration of Heterogeneous Networks". Current Bioinformatics 14, n.º 8 (13 de diciembre de 2019): 709–20. http://dx.doi.org/10.2174/1574893614666190220114644.
Texto completoDuffy, Áine, Marie Verbanck, Amanda Dobbyn, Hong-Hee Won, Joshua L. Rein, Iain S. Forrest, Girish Nadkarni, Ghislain Rocheleau y Ron Do. "Tissue-specific genetic features inform prediction of drug side effects in clinical trials". Science Advances 6, n.º 37 (septiembre de 2020): eabb6242. http://dx.doi.org/10.1126/sciadv.abb6242.
Texto completoChen, Lei, Tao Huang, Jian Zhang, Ming-Yue Zheng, Kai-Yan Feng, Yu-Dong Cai y Kuo-Chen Chou. "Predicting Drugs Side Effects Based on Chemical-Chemical Interactions and Protein-Chemical Interactions". BioMed Research International 2013 (2013): 1–8. http://dx.doi.org/10.1155/2013/485034.
Texto completoZhou, Mengshi, Yang Chen y Rong Xu. "A Drug-Side Effect Context-Sensitive Network approach for drug target prediction". Bioinformatics 35, n.º 12 (14 de noviembre de 2018): 2100–2107. http://dx.doi.org/10.1093/bioinformatics/bty906.
Texto completoShaked, Itay, Matthew A. Oberhardt, Nir Atias, Roded Sharan y Eytan Ruppin. "Metabolic Network Prediction of Drug Side Effects". Cell Systems 2, n.º 3 (marzo de 2016): 209–13. http://dx.doi.org/10.1016/j.cels.2016.03.001.
Texto completoLiang, Haiyan, Lei Chen, Xian Zhao y Xiaolin Zhang. "Prediction of Drug Side Effects with a Refined Negative Sample Selection Strategy". Computational and Mathematical Methods in Medicine 2020 (9 de mayo de 2020): 1–16. http://dx.doi.org/10.1155/2020/1573543.
Texto completoSeo, Sukyung, Taekeon Lee y Youngmi Yoon. "Prediction of Drug Side Effects Based on Drug-Related Information". Journal of Korean Institute of Information Technology 17, n.º 12 (31 de diciembre de 2019): 21–28. http://dx.doi.org/10.14801/jkiit.2019.17.12.21.
Texto completoChen, Y. H., Y. T. Shih, C. S. Chien y C. S. Tsai. "Predicting adverse drug effects: A heterogeneous graph convolution network with a multi-layer perceptron approach". PLOS ONE 17, n.º 12 (14 de diciembre de 2022): e0266435. http://dx.doi.org/10.1371/journal.pone.0266435.
Texto completoZheng, Yi, Wentao Zhao, Chengcheng Sun y Qian Li. "Drug Side-Effect Prediction Using Heterogeneous Features and Bipartite Local Models". Computers, Materials & Continua 60, n.º 2 (2019): 481–96. http://dx.doi.org/10.32604/cmc.2019.05536.
Texto completoNiu, Yanqing y Wen Zhang. "Quantitative prediction of drug side effects based on drug-related features". Interdisciplinary Sciences: Computational Life Sciences 9, n.º 3 (17 de mayo de 2017): 434–44. http://dx.doi.org/10.1007/s12539-017-0236-5.
Texto completoLounkine, Eugen, Michael J. Keiser, Steven Whitebread, Dmitri Mikhailov, Jacques Hamon, Jeremy L. Jenkins, Paul Lavan et al. "Large-scale prediction and testing of drug activity on side-effect targets". Nature 486, n.º 7403 (junio de 2012): 361–67. http://dx.doi.org/10.1038/nature11159.
Texto completoPancino, Niccolò, Yohann Perron, Pietro Bongini y Franco Scarselli. "Drug Side Effect Prediction with Deep Learning Molecular Embedding in a Graph-of-Graphs Domain". Mathematics 10, n.º 23 (1 de diciembre de 2022): 4550. http://dx.doi.org/10.3390/math10234550.
Texto completoGuney, Emre. "Revisiting Cross-Validation of Drug Similarity Based Classifiers Using Paired Data". Genomics and Computational Biology 4, n.º 1 (6 de diciembre de 2017): 100047. http://dx.doi.org/10.18547/gcb.2018.vol4.iss1.e100047.
Texto completoHuang, Wei, Chunyan Li, Ying Ju y Yan Gao. "The Next Generation of Machine Learning in DDIs Prediction". Current Pharmaceutical Design 27, n.º 23 (9 de septiembre de 2021): 2728–36. http://dx.doi.org/10.2174/1381612827666210127122312.
Texto completoLim, Seungsoo, Hayon Lee y Youngmi Yoon. "Prediction of New Drug-Side Effect Relation using Word2Vec Model-based Word Similarity". Journal of Korean Institute of Information Technology 18, n.º 11 (30 de noviembre de 2020): 25–33. http://dx.doi.org/10.14801/jkiit.2020.18.11.25.
Texto completoYamanishi, Yoshihiro, Edouard Pauwels y Masaaki Kotera. "Drug Side-Effect Prediction Based on the Integration of Chemical and Biological Spaces". Journal of Chemical Information and Modeling 52, n.º 12 (4 de diciembre de 2012): 3284–92. http://dx.doi.org/10.1021/ci2005548.
Texto completoZhou, Mengshi, Chunlei Zheng y Rong Xu. "Combining phenome-driven drug-target interaction prediction with patients’ electronic health records-based clinical corroboration toward drug discovery". Bioinformatics 36, Supplement_1 (1 de julio de 2020): i436—i444. http://dx.doi.org/10.1093/bioinformatics/btaa451.
Texto completoChe, Jingang, Lei Chen, Zi-Han Guo, Shuaiqun Wang y Aorigele. "Drug Target Group Prediction with Multiple Drug Networks". Combinatorial Chemistry & High Throughput Screening 23, n.º 4 (19 de mayo de 2020): 274–84. http://dx.doi.org/10.2174/1386207322666190702103927.
Texto completoMohanapriya, D. y Dr R. Beena. "Predicting Drug Indications and Side Effects Using Deep Learning and Transfer Learning". Alinteri Journal of Agriculture Sciences 36, n.º 1 (17 de mayo de 2021): 281–89. http://dx.doi.org/10.47059/alinteri/v36i1/ajas21042.
Texto completoMower, Justin, Devika Subramanian y Trevor Cohen. "Learning predictive models of drug side-effect relationships from distributed representations of literature-derived semantic predications". Journal of the American Medical Informatics Association 25, n.º 10 (11 de julio de 2018): 1339–50. http://dx.doi.org/10.1093/jamia/ocy077.
Texto completoYao, Yuanzhe, Zeheng Wang, Liang Li, Kun Lu, Runyu Liu, Zhiyuan Liu y Jing Yan. "An Ontology-Based Artificial Intelligence Model for Medicine Side-Effect Prediction: Taking Traditional Chinese Medicine as an Example". Computational and Mathematical Methods in Medicine 2019 (1 de octubre de 2019): 1–7. http://dx.doi.org/10.1155/2019/8617503.
Texto completoDykeman, J., M. Lowerison, P. Faris, N. Jette, N. Pillay, B. Klassen, A. Hanson, W. Murphy, P. Federico y S. Wiebe. "Prediction of Antiepileptic Drug Side Effects in Patients with Epilepsy (S06.007)". Neurology 78, Meeting Abstracts 1 (22 de abril de 2012): S06.007. http://dx.doi.org/10.1212/wnl.78.1_meetingabstracts.s06.007.
Texto completoKanji, Rakesh, Abhinav Sharma y Ganesh Bagler. "Phenotypic side effects prediction by optimizing correlation with chemical and target profiles of drugs". Molecular BioSystems 11, n.º 11 (2015): 2900–2906. http://dx.doi.org/10.1039/c5mb00312a.
Texto completoWilson, Jennifer L., Alessio Gravina y Kevin Grimes. "From random to predictive: a context-specific interaction framework improves selection of drug protein–protein interactions for unknown drug pathways". Integrative Biology 14, n.º 1 (enero de 2022): 13–24. http://dx.doi.org/10.1093/intbio/zyac002.
Texto completoWang, Chen y Lukasz Kurgan. "Review and comparative assessment of similarity-based methods for prediction of drug–protein interactions in the druggable human proteome". Briefings in Bioinformatics 20, n.º 6 (8 de agosto de 2018): 2066–87. http://dx.doi.org/10.1093/bib/bby069.
Texto completoPaiman, Arif, Ahmad Mohammad y Mubashar Rehman. "Role of Computer Aided Drug Design in Modern Drug Discovery and Pharmacokinetic Prediction". Global Drug Design & Development Review II, n.º I (30 de diciembre de 2017): 1–8. http://dx.doi.org/10.31703/gdddr.2017(ii-i).01.
Texto completoHwang, Youhyeon, Min Oh y Youngmi Yoon. "Extraction of specific common genetic network of side effect pair, and prediction of side effects for a drug based on PPI network". Journal of the Korea Society of Computer and Information 21, n.º 1 (30 de enero de 2016): 115–23. http://dx.doi.org/10.9708/jksci.2016.21.1.115.
Texto completoPauwels, Edouard, Véronique Stoven y Yoshihiro Yamanishi. "Predicting drug side-effect profiles: a chemical fragment-based approach". BMC Bioinformatics 12, n.º 1 (2011): 169. http://dx.doi.org/10.1186/1471-2105-12-169.
Texto completoYu, Liyi, Meiling Cheng, Wangren Qiu, Xuan Xiao y Weizhong Lin. "idse-HE: Hybrid embedding graph neural network for drug side effects prediction". Journal of Biomedical Informatics 131 (julio de 2022): 104098. http://dx.doi.org/10.1016/j.jbi.2022.104098.
Texto completoLee, Chun Yen y Yi‐Ping Phoebe Chen. "Descriptive prediction of drug side‐effects using a hybrid deep learning model". International Journal of Intelligent Systems 36, n.º 6 (marzo de 2021): 2491–510. http://dx.doi.org/10.1002/int.22389.
Texto completoJahid, Md Jamiul y Jianhua Ruan. "Structure-based prediction of drug side effects using a novel classification algorithm". International Journal of Computational Biology and Drug Design 9, n.º 1/2 (2016): 87. http://dx.doi.org/10.1504/ijcbdd.2016.074985.
Texto completoCHEN, Y. Z., Z. R. LI y C. Y. UNG. "COMPUTATIONAL METHOD FOR DRUG TARGET SEARCH AND APPLICATION IN DRUG DISCOVERY". Journal of Theoretical and Computational Chemistry 01, n.º 01 (julio de 2002): 213–24. http://dx.doi.org/10.1142/s0219633602000166.
Texto completoIslam, Sk Mazharul, Sk Md Mosaddek Hossain y Sumanta Ray. "DTI-SNNFRA: Drug-target interaction prediction by shared nearest neighbors and fuzzy-rough approximation". PLOS ONE 16, n.º 2 (19 de febrero de 2021): e0246920. http://dx.doi.org/10.1371/journal.pone.0246920.
Texto completoSun, Yifan, Yi Xiong, Qian Xu y Dongqing Wei. "A Hadoop-Based Method to Predict Potential Effective Drug Combination". BioMed Research International 2014 (2014): 1–5. http://dx.doi.org/10.1155/2014/196858.
Texto completoXuan, Ping, Yangkun Cao, Tiangang Zhang, Xiao Wang, Shuxiang Pan y Tonghui Shen. "Drug repositioning through integration of prior knowledge and projections of drugs and diseases". Bioinformatics 35, n.º 20 (13 de marzo de 2019): 4108–19. http://dx.doi.org/10.1093/bioinformatics/btz182.
Texto completoLiang, Siqi y Haiyuan Yu. "Revealing new therapeutic opportunities through drug target prediction: a class imbalance-tolerant machine learning approach". Bioinformatics 36, n.º 16 (12 de mayo de 2020): 4490–97. http://dx.doi.org/10.1093/bioinformatics/btaa495.
Texto completoJaundoo, Rajeev y Travis J. A. Craddock. "DRUGPATH: A New Database for Mapping Polypharmacology". Alberta Academic Review 2, n.º 3 (15 de octubre de 2019): 4. http://dx.doi.org/10.29173/aar92.
Texto completoSachdev, Kanica y Manoj K. Gupta. "A comprehensive review of computational techniques for the prediction of drug side effects". Drug Development Research 81, n.º 6 (20 de abril de 2020): 650–70. http://dx.doi.org/10.1002/ddr.21669.
Texto completoSamizadeh, Mina y Behrouz Minaei-Bidgoli. "Drug-target Interaction Prediction by Metapath2vec Node Embedding in Heterogeneous Network of Interactions". International Journal on Artificial Intelligence Tools 29, n.º 01 (febrero de 2020): 2050001. http://dx.doi.org/10.1142/s0218213020500013.
Texto completoKulemina, Lidia V. y David A. Ostrov. "Prediction of Off-Target Effects on Angiotensin-Converting Enzyme 2". Journal of Biomolecular Screening 16, n.º 8 (22 de agosto de 2011): 878–85. http://dx.doi.org/10.1177/1087057111413919.
Texto completoWang, Meng, Haofen Wang, Xing Liu, Xinyu Ma y Beilun Wang. "Drug-Drug Interaction Predictions via Knowledge Graph and Text Embedding: Instrument Validation Study". JMIR Medical Informatics 9, n.º 6 (24 de junio de 2021): e28277. http://dx.doi.org/10.2196/28277.
Texto completoGao, Yu-Fei, Lei Chen, Guo-Hua Huang, Tao Zhang, Kai-Yan Feng, Hai-Peng Li y Yang Jiang. "Prediction of Drugs Target Groups Based on ChEBI Ontology". BioMed Research International 2013 (2013): 1–6. http://dx.doi.org/10.1155/2013/132724.
Texto completoB, Nithya y Anitha G. "Drug Side-effects Prediction using Hierarchical Fuzzy Deep Learning for Diagnosing Specific Disease". International Journal of Engineering Trends and Technology 70, n.º 8 (31 de agosto de 2022): 140–48. http://dx.doi.org/10.14445/22315381/ijett-v70i8p214.
Texto completoZhao, Xian, Lei Chen y Jing Lu. "A similarity-based method for prediction of drug side effects with heterogeneous information". Mathematical Biosciences 306 (diciembre de 2018): 136–44. http://dx.doi.org/10.1016/j.mbs.2018.09.010.
Texto completoDomingo-Fernández, Daniel, Yojana Gadiya, Abhishek Patel, Sarah Mubeen, Daniel Rivas-Barragan, Chris W. Diana, Biswapriya B. Misra, David Healey, Joe Rokicki y Viswa Colluru. "Causal reasoning over knowledge graphs leveraging drug-perturbed and disease-specific transcriptomic signatures for drug discovery". PLOS Computational Biology 18, n.º 2 (25 de febrero de 2022): e1009909. http://dx.doi.org/10.1371/journal.pcbi.1009909.
Texto completo