Artículos de revistas sobre el tema "Drug Side Effect Prediction"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte los 50 mejores artículos de revistas para su investigación sobre el tema "Drug Side Effect Prediction".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Explore artículos de revistas sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.
Hu, Baofang, Hong Wang, and Zhenmei Yu. "Drug Side-Effect Prediction Via Random Walk on the Signed Heterogeneous Drug Network." Molecules 24, no. 20 (2019): 3668. http://dx.doi.org/10.3390/molecules24203668.
Texto completoSeo, Sukyung, Taekeon Lee, Mi-hyun Kim, and Youngmi Yoon. "Prediction of Side Effects Using Comprehensive Similarity Measures." BioMed Research International 2020 (February 28, 2020): 1–10. http://dx.doi.org/10.1155/2020/1357630.
Texto completoKim, Jinwoo, and Miyoung Shin. "A Knowledge Graph Embedding Approach for Polypharmacy Side Effects Prediction." Applied Sciences 13, no. 5 (2023): 2842. http://dx.doi.org/10.3390/app13052842.
Texto completoArshed, Muhammad Asad, Shahzad Mumtaz, Omer Riaz, Waqas Sharif, and Saima Abdullah. "A Deep Learning Framework for Multi Drug Side Effects Prediction with Drug Chemical Substructure." Vol 4 Issue 1 4, no. 1 (2022): 19–31. http://dx.doi.org/10.33411/ijist/2022040102.
Texto completoMohd Ali, Yousoff Effendy, Kiam Heong Kwa, and Kurunathan Ratnavelu. "Predicting new drug indications from network analysis." International Journal of Modern Physics C 28, no. 09 (2017): 1750118. http://dx.doi.org/10.1142/s0129183117501182.
Texto completoZhao, Xian, Lei Chen, Zi-Han Guo, and Tao Liu. "Predicting Drug Side Effects with Compact Integration of Heterogeneous Networks." Current Bioinformatics 14, no. 8 (2019): 709–20. http://dx.doi.org/10.2174/1574893614666190220114644.
Texto completoDuffy, Áine, Marie Verbanck, Amanda Dobbyn, et al. "Tissue-specific genetic features inform prediction of drug side effects in clinical trials." Science Advances 6, no. 37 (2020): eabb6242. http://dx.doi.org/10.1126/sciadv.abb6242.
Texto completoChen, Lei, Tao Huang, Jian Zhang, et al. "Predicting Drugs Side Effects Based on Chemical-Chemical Interactions and Protein-Chemical Interactions." BioMed Research International 2013 (2013): 1–8. http://dx.doi.org/10.1155/2013/485034.
Texto completoZhou, Mengshi, Yang Chen, and Rong Xu. "A Drug-Side Effect Context-Sensitive Network approach for drug target prediction." Bioinformatics 35, no. 12 (2018): 2100–2107. http://dx.doi.org/10.1093/bioinformatics/bty906.
Texto completoShaked, Itay, Matthew A. Oberhardt, Nir Atias, Roded Sharan, and Eytan Ruppin. "Metabolic Network Prediction of Drug Side Effects." Cell Systems 2, no. 3 (2016): 209–13. http://dx.doi.org/10.1016/j.cels.2016.03.001.
Texto completoLiang, Haiyan, Lei Chen, Xian Zhao, and Xiaolin Zhang. "Prediction of Drug Side Effects with a Refined Negative Sample Selection Strategy." Computational and Mathematical Methods in Medicine 2020 (May 9, 2020): 1–16. http://dx.doi.org/10.1155/2020/1573543.
Texto completoSeo, Sukyung, Taekeon Lee, and Youngmi Yoon. "Prediction of Drug Side Effects Based on Drug-Related Information." Journal of Korean Institute of Information Technology 17, no. 12 (2019): 21–28. http://dx.doi.org/10.14801/jkiit.2019.17.12.21.
Texto completoChen, Y. H., Y. T. Shih, C. S. Chien, and C. S. Tsai. "Predicting adverse drug effects: A heterogeneous graph convolution network with a multi-layer perceptron approach." PLOS ONE 17, no. 12 (2022): e0266435. http://dx.doi.org/10.1371/journal.pone.0266435.
Texto completoZheng, Yi, Wentao Zhao, Chengcheng Sun, and Qian Li. "Drug Side-Effect Prediction Using Heterogeneous Features and Bipartite Local Models." Computers, Materials & Continua 60, no. 2 (2019): 481–96. http://dx.doi.org/10.32604/cmc.2019.05536.
Texto completoNiu, Yanqing, and Wen Zhang. "Quantitative prediction of drug side effects based on drug-related features." Interdisciplinary Sciences: Computational Life Sciences 9, no. 3 (2017): 434–44. http://dx.doi.org/10.1007/s12539-017-0236-5.
Texto completoLounkine, Eugen, Michael J. Keiser, Steven Whitebread, et al. "Large-scale prediction and testing of drug activity on side-effect targets." Nature 486, no. 7403 (2012): 361–67. http://dx.doi.org/10.1038/nature11159.
Texto completoPancino, Niccolò, Yohann Perron, Pietro Bongini, and Franco Scarselli. "Drug Side Effect Prediction with Deep Learning Molecular Embedding in a Graph-of-Graphs Domain." Mathematics 10, no. 23 (2022): 4550. http://dx.doi.org/10.3390/math10234550.
Texto completoGuney, Emre. "Revisiting Cross-Validation of Drug Similarity Based Classifiers Using Paired Data." Genomics and Computational Biology 4, no. 1 (2017): 100047. http://dx.doi.org/10.18547/gcb.2018.vol4.iss1.e100047.
Texto completoHuang, Wei, Chunyan Li, Ying Ju, and Yan Gao. "The Next Generation of Machine Learning in DDIs Prediction." Current Pharmaceutical Design 27, no. 23 (2021): 2728–36. http://dx.doi.org/10.2174/1381612827666210127122312.
Texto completoLim, Seungsoo, Hayon Lee, and Youngmi Yoon. "Prediction of New Drug-Side Effect Relation using Word2Vec Model-based Word Similarity." Journal of Korean Institute of Information Technology 18, no. 11 (2020): 25–33. http://dx.doi.org/10.14801/jkiit.2020.18.11.25.
Texto completoYamanishi, Yoshihiro, Edouard Pauwels, and Masaaki Kotera. "Drug Side-Effect Prediction Based on the Integration of Chemical and Biological Spaces." Journal of Chemical Information and Modeling 52, no. 12 (2012): 3284–92. http://dx.doi.org/10.1021/ci2005548.
Texto completoZhou, Mengshi, Chunlei Zheng, and Rong Xu. "Combining phenome-driven drug-target interaction prediction with patients’ electronic health records-based clinical corroboration toward drug discovery." Bioinformatics 36, Supplement_1 (2020): i436—i444. http://dx.doi.org/10.1093/bioinformatics/btaa451.
Texto completoChe, Jingang, Lei Chen, Zi-Han Guo, Shuaiqun Wang, and Aorigele. "Drug Target Group Prediction with Multiple Drug Networks." Combinatorial Chemistry & High Throughput Screening 23, no. 4 (2020): 274–84. http://dx.doi.org/10.2174/1386207322666190702103927.
Texto completoMohanapriya, D., and Dr R. Beena. "Predicting Drug Indications and Side Effects Using Deep Learning and Transfer Learning." Alinteri Journal of Agriculture Sciences 36, no. 1 (2021): 281–89. http://dx.doi.org/10.47059/alinteri/v36i1/ajas21042.
Texto completoMower, Justin, Devika Subramanian, and Trevor Cohen. "Learning predictive models of drug side-effect relationships from distributed representations of literature-derived semantic predications." Journal of the American Medical Informatics Association 25, no. 10 (2018): 1339–50. http://dx.doi.org/10.1093/jamia/ocy077.
Texto completoYao, Yuanzhe, Zeheng Wang, Liang Li, et al. "An Ontology-Based Artificial Intelligence Model for Medicine Side-Effect Prediction: Taking Traditional Chinese Medicine as an Example." Computational and Mathematical Methods in Medicine 2019 (October 1, 2019): 1–7. http://dx.doi.org/10.1155/2019/8617503.
Texto completoDykeman, J., M. Lowerison, P. Faris, et al. "Prediction of Antiepileptic Drug Side Effects in Patients with Epilepsy (S06.007)." Neurology 78, Meeting Abstracts 1 (2012): S06.007. http://dx.doi.org/10.1212/wnl.78.1_meetingabstracts.s06.007.
Texto completoKanji, Rakesh, Abhinav Sharma, and Ganesh Bagler. "Phenotypic side effects prediction by optimizing correlation with chemical and target profiles of drugs." Molecular BioSystems 11, no. 11 (2015): 2900–2906. http://dx.doi.org/10.1039/c5mb00312a.
Texto completoWilson, Jennifer L., Alessio Gravina, and Kevin Grimes. "From random to predictive: a context-specific interaction framework improves selection of drug protein–protein interactions for unknown drug pathways." Integrative Biology 14, no. 1 (2022): 13–24. http://dx.doi.org/10.1093/intbio/zyac002.
Texto completoWang, Chen, and Lukasz Kurgan. "Review and comparative assessment of similarity-based methods for prediction of drug–protein interactions in the druggable human proteome." Briefings in Bioinformatics 20, no. 6 (2018): 2066–87. http://dx.doi.org/10.1093/bib/bby069.
Texto completoPaiman, Arif, Ahmad Mohammad, and Mubashar Rehman. "Role of Computer Aided Drug Design in Modern Drug Discovery and Pharmacokinetic Prediction." Global Drug Design & Development Review II, no. I (2017): 1–8. http://dx.doi.org/10.31703/gdddr.2017(ii-i).01.
Texto completoHwang, Youhyeon, Min Oh, and Youngmi Yoon. "Extraction of specific common genetic network of side effect pair, and prediction of side effects for a drug based on PPI network." Journal of the Korea Society of Computer and Information 21, no. 1 (2016): 115–23. http://dx.doi.org/10.9708/jksci.2016.21.1.115.
Texto completoPauwels, Edouard, Véronique Stoven, and Yoshihiro Yamanishi. "Predicting drug side-effect profiles: a chemical fragment-based approach." BMC Bioinformatics 12, no. 1 (2011): 169. http://dx.doi.org/10.1186/1471-2105-12-169.
Texto completoYu, Liyi, Meiling Cheng, Wangren Qiu, Xuan Xiao, and Weizhong Lin. "idse-HE: Hybrid embedding graph neural network for drug side effects prediction." Journal of Biomedical Informatics 131 (July 2022): 104098. http://dx.doi.org/10.1016/j.jbi.2022.104098.
Texto completoLee, Chun Yen, and Yi‐Ping Phoebe Chen. "Descriptive prediction of drug side‐effects using a hybrid deep learning model." International Journal of Intelligent Systems 36, no. 6 (2021): 2491–510. http://dx.doi.org/10.1002/int.22389.
Texto completoJahid, Md Jamiul, and Jianhua Ruan. "Structure-based prediction of drug side effects using a novel classification algorithm." International Journal of Computational Biology and Drug Design 9, no. 1/2 (2016): 87. http://dx.doi.org/10.1504/ijcbdd.2016.074985.
Texto completoCHEN, Y. Z., Z. R. LI, and C. Y. UNG. "COMPUTATIONAL METHOD FOR DRUG TARGET SEARCH AND APPLICATION IN DRUG DISCOVERY." Journal of Theoretical and Computational Chemistry 01, no. 01 (2002): 213–24. http://dx.doi.org/10.1142/s0219633602000166.
Texto completoIslam, Sk Mazharul, Sk Md Mosaddek Hossain, and Sumanta Ray. "DTI-SNNFRA: Drug-target interaction prediction by shared nearest neighbors and fuzzy-rough approximation." PLOS ONE 16, no. 2 (2021): e0246920. http://dx.doi.org/10.1371/journal.pone.0246920.
Texto completoSun, Yifan, Yi Xiong, Qian Xu, and Dongqing Wei. "A Hadoop-Based Method to Predict Potential Effective Drug Combination." BioMed Research International 2014 (2014): 1–5. http://dx.doi.org/10.1155/2014/196858.
Texto completoXuan, Ping, Yangkun Cao, Tiangang Zhang, Xiao Wang, Shuxiang Pan, and Tonghui Shen. "Drug repositioning through integration of prior knowledge and projections of drugs and diseases." Bioinformatics 35, no. 20 (2019): 4108–19. http://dx.doi.org/10.1093/bioinformatics/btz182.
Texto completoLiang, Siqi, and Haiyuan Yu. "Revealing new therapeutic opportunities through drug target prediction: a class imbalance-tolerant machine learning approach." Bioinformatics 36, no. 16 (2020): 4490–97. http://dx.doi.org/10.1093/bioinformatics/btaa495.
Texto completoJaundoo, Rajeev, and Travis J. A. Craddock. "DRUGPATH: A New Database for Mapping Polypharmacology." Alberta Academic Review 2, no. 3 (2019): 4. http://dx.doi.org/10.29173/aar92.
Texto completoSachdev, Kanica, and Manoj K. Gupta. "A comprehensive review of computational techniques for the prediction of drug side effects." Drug Development Research 81, no. 6 (2020): 650–70. http://dx.doi.org/10.1002/ddr.21669.
Texto completoSamizadeh, Mina, and Behrouz Minaei-Bidgoli. "Drug-target Interaction Prediction by Metapath2vec Node Embedding in Heterogeneous Network of Interactions." International Journal on Artificial Intelligence Tools 29, no. 01 (2020): 2050001. http://dx.doi.org/10.1142/s0218213020500013.
Texto completoKulemina, Lidia V., and David A. Ostrov. "Prediction of Off-Target Effects on Angiotensin-Converting Enzyme 2." Journal of Biomolecular Screening 16, no. 8 (2011): 878–85. http://dx.doi.org/10.1177/1087057111413919.
Texto completoWang, Meng, Haofen Wang, Xing Liu, Xinyu Ma, and Beilun Wang. "Drug-Drug Interaction Predictions via Knowledge Graph and Text Embedding: Instrument Validation Study." JMIR Medical Informatics 9, no. 6 (2021): e28277. http://dx.doi.org/10.2196/28277.
Texto completoGao, Yu-Fei, Lei Chen, Guo-Hua Huang, et al. "Prediction of Drugs Target Groups Based on ChEBI Ontology." BioMed Research International 2013 (2013): 1–6. http://dx.doi.org/10.1155/2013/132724.
Texto completoB, Nithya, and Anitha G. "Drug Side-effects Prediction using Hierarchical Fuzzy Deep Learning for Diagnosing Specific Disease." International Journal of Engineering Trends and Technology 70, no. 8 (2022): 140–48. http://dx.doi.org/10.14445/22315381/ijett-v70i8p214.
Texto completoZhao, Xian, Lei Chen, and Jing Lu. "A similarity-based method for prediction of drug side effects with heterogeneous information." Mathematical Biosciences 306 (December 2018): 136–44. http://dx.doi.org/10.1016/j.mbs.2018.09.010.
Texto completoDomingo-Fernández, Daniel, Yojana Gadiya, Abhishek Patel, et al. "Causal reasoning over knowledge graphs leveraging drug-perturbed and disease-specific transcriptomic signatures for drug discovery." PLOS Computational Biology 18, no. 2 (2022): e1009909. http://dx.doi.org/10.1371/journal.pcbi.1009909.
Texto completo