Literatura académica sobre el tema "Drug Side Effect Prediction"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Drug Side Effect Prediction".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Drug Side Effect Prediction"
Hu, Baofang, Hong Wang y Zhenmei Yu. "Drug Side-Effect Prediction Via Random Walk on the Signed Heterogeneous Drug Network". Molecules 24, n.º 20 (11 de octubre de 2019): 3668. http://dx.doi.org/10.3390/molecules24203668.
Texto completoSeo, Sukyung, Taekeon Lee, Mi-hyun Kim y Youngmi Yoon. "Prediction of Side Effects Using Comprehensive Similarity Measures". BioMed Research International 2020 (28 de febrero de 2020): 1–10. http://dx.doi.org/10.1155/2020/1357630.
Texto completoKim, Jinwoo y Miyoung Shin. "A Knowledge Graph Embedding Approach for Polypharmacy Side Effects Prediction". Applied Sciences 13, n.º 5 (22 de febrero de 2023): 2842. http://dx.doi.org/10.3390/app13052842.
Texto completoArshed, Muhammad Asad, Shahzad Mumtaz, Omer Riaz, Waqas Sharif y Saima Abdullah. "A Deep Learning Framework for Multi Drug Side Effects Prediction with Drug Chemical Substructure". Vol 4 Issue 1 4, n.º 1 (22 de enero de 2022): 19–31. http://dx.doi.org/10.33411/ijist/2022040102.
Texto completoMohd Ali, Yousoff Effendy, Kiam Heong Kwa y Kurunathan Ratnavelu. "Predicting new drug indications from network analysis". International Journal of Modern Physics C 28, n.º 09 (septiembre de 2017): 1750118. http://dx.doi.org/10.1142/s0129183117501182.
Texto completoZhao, Xian, Lei Chen, Zi-Han Guo y Tao Liu. "Predicting Drug Side Effects with Compact Integration of Heterogeneous Networks". Current Bioinformatics 14, n.º 8 (13 de diciembre de 2019): 709–20. http://dx.doi.org/10.2174/1574893614666190220114644.
Texto completoDuffy, Áine, Marie Verbanck, Amanda Dobbyn, Hong-Hee Won, Joshua L. Rein, Iain S. Forrest, Girish Nadkarni, Ghislain Rocheleau y Ron Do. "Tissue-specific genetic features inform prediction of drug side effects in clinical trials". Science Advances 6, n.º 37 (septiembre de 2020): eabb6242. http://dx.doi.org/10.1126/sciadv.abb6242.
Texto completoChen, Lei, Tao Huang, Jian Zhang, Ming-Yue Zheng, Kai-Yan Feng, Yu-Dong Cai y Kuo-Chen Chou. "Predicting Drugs Side Effects Based on Chemical-Chemical Interactions and Protein-Chemical Interactions". BioMed Research International 2013 (2013): 1–8. http://dx.doi.org/10.1155/2013/485034.
Texto completoZhou, Mengshi, Yang Chen y Rong Xu. "A Drug-Side Effect Context-Sensitive Network approach for drug target prediction". Bioinformatics 35, n.º 12 (14 de noviembre de 2018): 2100–2107. http://dx.doi.org/10.1093/bioinformatics/bty906.
Texto completoShaked, Itay, Matthew A. Oberhardt, Nir Atias, Roded Sharan y Eytan Ruppin. "Metabolic Network Prediction of Drug Side Effects". Cell Systems 2, n.º 3 (marzo de 2016): 209–13. http://dx.doi.org/10.1016/j.cels.2016.03.001.
Texto completoTesis sobre el tema "Drug Side Effect Prediction"
Wang, Chen. "High-throughput prediction and analysis of drug-protein interactions in the druggable human proteome". VCU Scholars Compass, 2018. https://scholarscompass.vcu.edu/etd/5509.
Texto completoBellón, Molina Víctor. "Prédiction personalisée des effets secondaires indésirables de médicaments". Thesis, Paris Sciences et Lettres (ComUE), 2017. http://www.theses.fr/2017PSLEM023/document.
Texto completoAdverse drug reaction (ADR) is a serious concern that has important health and economical repercussions. Between 1.9%-2.3% of the hospitalized patients suffer from ADR, and the annual cost of ADR have been estimated to be of 400 million euros in Germany alone. Furthermore, ADRs can cause the withdrawal of a drug from the market, which can cause up to millions of dollars of losses to the pharmaceutical industry.Multiple studies suggest that genetic factors may play a role in the response of the patients to their treatment. This covers not only the response in terms of the intended main effect, but also % according toin terms of potential side effects. The complexity of predicting drug response suggests that machine learning could bring new tools and techniques for understanding ADR.In this doctoral thesis, we study different problems related to drug response prediction, based on the genetic characteristics of patients.We frame them through multitask machine learning frameworks, which combine all data available for related problems in order to solve them at the same time.We propose a novel model for multitask linear prediction that uses task descriptors to select relevant features and make predictions with better performance as state-of-the-art algorithms. Finally, we study strategies for increasing the stability of the selected features, in order to improve interpretability for biological applications
Amanzadi, Amirhossein. "Predicting safe drug combinations with Graph Neural Networks (GNN)". Thesis, Uppsala universitet, Institutionen för farmaceutisk biovetenskap, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-446691.
Texto completoVillafranca, Steven Wayne. "The effect of early psychostimulant treatment on abuse liability and dopamine receptors". CSUSB ScholarWorks, 2005. https://scholarworks.lib.csusb.edu/etd-project/2824.
Texto completoDiaz, Boada Juan Sebastian. "Polypharmacy Side Effect Prediction with Graph Convolutional Neural Network based on Heterogeneous Structural and Biological Data". Thesis, KTH, Numerisk analys, NA, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-288537.
Texto completoFör att minska dödligheten och sjukligheten hos patienter som lider av komplexa sjukdomar är det avgörande att kunna förutsäga biverkningar från polyfarmaci. Att experimentellt förutsäga biverkningarna är dock ogenomförbart på grund av det stora antalet möjliga läkemedelskombinationer, vilket lämnar in silico-verktyg som det mest lovande sättet att lösa detta problem. Detta arbete förbättrar prestandan och robustheten av ett av det senaste grafiska faltningsnätverken som är utformat för att förutsäga biverkningar från polyfarmaci, genom att mata det med läkemedel-protein-nätverkets komplexitetsegenskaper. Ändringarna involverar också skapandet av en direkt pipeline för att återge resultaten och testa den med olika dataset.
Zayed, Aref. "Development of ICP-MS assays for the study and prediction of the efficacy and side effects of Pt-based drugs in cancer chemotherapy". Thesis, Loughborough University, 2012. https://dspace.lboro.ac.uk/2134/9446.
Texto completoGauthier, Kelly J. "Length of Hospital Stay, Delirium and Discharge Status Outcomes Associated With Anticholinergic Drug Use in Elderly Hospitalized Dementia Patients". VCU Scholars Compass, 2006. http://hdl.handle.net/10156/1704.
Texto completoWinter, Lara. "Characterisation of the neurosteroid analgesic alphadolone". Monash University, Dept. of Anaesthesia, 2004. http://arrow.monash.edu.au/hdl/1959.1/9669.
Texto completoKucher, Kellie Lynn. "Effect of preweanling methylphenidate exposure on the induction, extinction and reinstatement of morphine-Induced conditioned place preference in rats". CSUSB ScholarWorks, 2005. https://scholarworks.lib.csusb.edu/etd-project/2892.
Texto completoGouws, Stephanus Andries. "The impact of hospital surveillance programmes on the incidence of adverse drug reaction reporting in a South African teaching hospital". Master's thesis, University of Cape Town, 1989. http://hdl.handle.net/11427/27186.
Texto completoLibros sobre el tema "Drug Side Effect Prediction"
J, Vaz Roy y Klabunde Thomas, eds. Antitargets: Prediction and prevention of drug side effects. Weinheim: Wiley-VCH, 2008.
Buscar texto completoJ, Vaz Roy y Klabunde Thomas, eds. Antitargets: Prediction and prevention of drug side effects. Weinheim: Wiley-VCH, 2008.
Buscar texto completoRoy, Kunal. Quantitative structure-activity relationships in drug design, predictive toxicology, and risk assessment. Hershey PA: Medical Information Science Reference, an imprint of IGI Global, 2015.
Buscar texto completoRachlis, Anita. Anti-retroviral treatment: Side effect management : report. [Ottawa]: Health and Welfare Canada, 1991.
Buscar texto completoDrug actions and interactions. New York: McGraw-Hill Medical, 2011.
Buscar texto completoPhysicians' guide to drug eruptions. New York: Parthenon Pub. Group, 1998.
Buscar texto completoGabriele, Cruciani, ed. Molecular interaction fields: Applications in drug discovery and ADME prediction. Weinheim: Wiley-VCH, 2005.
Buscar texto completoDetection of new adverse drug reactions. 3a ed. Basingstoke: Macmillan, 1992.
Buscar texto completoCutaneous side effects of drugs. Philadelphia: Saunders, 1988.
Buscar texto completoC, Talbot J. C., ed. The detection of new adverse drug reactions. 2a ed. Basingstoke: Macmillan, 1988.
Buscar texto completoCapítulos de libros sobre el tema "Drug Side Effect Prediction"
Singh, Davinder Paul, Abhishek Gupta y Baijnath Kaushik. "Anti-Drug Response and Drug Side Effect Prediction Methods: A Review". En Computational Intelligence and Data Analytics, 153–67. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-3391-2_11.
Texto completoMigeon, Jacques. "Prediction of Side Effects Based on Fingerprint Profiling and Data Mining". En Polypharmacology in Drug Discovery, 111–32. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2012. http://dx.doi.org/10.1002/9781118098141.ch6.
Texto completoVijayan, Alpha y B. S. Chandrasekar. "Drug-Drug Interactions and Side Effects Prediction Using Shallow Ensemble Deep Neural Networks". En Lecture Notes in Electrical Engineering, 377–87. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-2281-7_36.
Texto completoSaad, Abdelrahman, Fahima A. Maghraby y Yasser M. Omar. "Predicting Drug Target Interaction by Integrating Drug Fingerprint and Drug Side Effect Using Machine Learning". En Advances in Intelligent Systems and Computing, 281–90. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-14118-9_28.
Texto completoVijayan, Alpha y B. S. Chandrasekar. "An Ensemble BERT CHEM DDI for Prediction of Side Effects in Drug–Drug Interactions". En International Conference on Innovative Computing and Communications, 569–81. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-3679-1_47.
Texto completoBusatto, Anna, Jonathan Krauß, Evianne Kruithof, Hermenegild Arevalo y Ilse van Herck. "Electromechanical In Silico Testing Alters Predicted Drug-Induced Risk to Develop Torsade de Pointes". En Computational Physiology, 19–29. Cham: Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-25374-4_2.
Texto completoKanji, Rakesh y Ganesh Bagler. "A Generalized Partial Canonical Correlation Model to Measure Contribution of Individual Drug Features Toward Side Effects Prediction". En Advances in Data Science and Management, 159–72. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-0978-0_15.
Texto completoWiseman, E. H. y Y. Noguchi. "Limitations of laboratory models in predicting gastrointestinal toleration of oxicams and other anti-inflammatory drugs". En Side-Effects of Anti-Inflammatory Drugs, 41–54. Dordrecht: Springer Netherlands, 1987. http://dx.doi.org/10.1007/978-94-010-9775-8_3.
Texto completoPinto, Diogo, Pedro Costa, Rui Camacho y Vítor Santos Costa. "Predicting Drugs Adverse Side-Effects Using a Recommender-System". En Discovery Science, 201–8. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-24282-8_17.
Texto completoAtias, Nir y Roded Sharan. "An Algorithmic Framework for Predicting Side-Effects of Drugs". En Lecture Notes in Computer Science, 1–14. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-12683-3_1.
Texto completoActas de conferencias sobre el tema "Drug Side Effect Prediction"
Sun, Chengcheng, Yi Zheng, Yan Jia y Liang Gan. "Drug Side-effect Prediction based on Comprehensive Drug Similarity". En 2016 International Forum on Mechanical, Control and Automation (IFMCA 2016). Paris, France: Atlantis Press, 2017. http://dx.doi.org/10.2991/ifmca-16.2017.28.
Texto completoJahid, Md Jamiul y Jianhua Ruan. "An ensemble approach for drug side effect prediction". En 2013 IEEE International Conference on Bioinformatics and Biomedicine (BIBM). IEEE, 2013. http://dx.doi.org/10.1109/bibm.2013.6732532.
Texto completoZheng, Yi, Shameek Ghosh y Jinyan Li. "An Optimized Drug Similarity Framework for Side-effect Prediction". En 2017 Computing in Cardiology Conference. Computing in Cardiology, 2017. http://dx.doi.org/10.22489/cinc.2017.128-068.
Texto completoLuo, Yifu, Qijun Liu, Wenjian Wu, Fei Li y Xiaochen Bo. "Predicting drug side effects based on link prediction in bipartite network". En 2014 7th International Conference on Biomedical Engineering and Informatics (BMEI). IEEE, 2014. http://dx.doi.org/10.1109/bmei.2014.7002869.
Texto completoZhang, Wen, Yanlin Chen, Shikui Tu, Feng Liu y Qianlong Qu. "Drug side effect prediction through linear neighborhoods and multiple data source integration". En 2016 IEEE International Conference on Bioinformatics and Biomedicine (BIBM). IEEE, 2016. http://dx.doi.org/10.1109/bibm.2016.7822555.
Texto completoHu, Pengwei, Keith C. C. Chan, Lun Hu y Henry Leung. "Discovering second-order sub-structure associations in drug molecules for side-effect prediction". En 2017 IEEE International Conference on Bioinformatics and Biomedicine (BIBM). IEEE, 2017. http://dx.doi.org/10.1109/bibm.2017.8218013.
Texto completoEtani, Noriko. "Prediction Model of Side Effect in Drug Discovery and its Implementation for Web Application". En Annual International Conference on ICT: Big Data, Cloud and Security (ICT-BDCS 2015). Global Science and Technology Forum (GSTF), 2015. http://dx.doi.org/10.5176/2382-5669_ict-bdcs15.35.
Texto completoYao, Wenjie, Weizhong Zhao, Xingpeng Jiang, Xianjun Shen y Tingting He. "MPGNN-DSA: A Meta-path-based Graph Neural Network for drug-side effect association prediction". En 2022 IEEE International Conference on Bioinformatics and Biomedicine (BIBM). IEEE, 2022. http://dx.doi.org/10.1109/bibm55620.2022.9995486.
Texto completoHu, Pengwei, Zhu-Hong You, Tiantian He, Shaochun Li, Shuhang Gu y Keith C. C. Chan. "Learning Latent Patterns in Molecular Data for Explainable Drug Side Effects Prediction". En 2018 IEEE International Conference on Bioinformatics and Biomedicine (BIBM). IEEE, 2018. http://dx.doi.org/10.1109/bibm.2018.8621121.
Texto completoRozemberczki, Benedek, Stephen Bonner, Andriy Nikolov, Michaël Ughetto, Sebastian Nilsson y Eliseo Papa. "A Unified View of Relational Deep Learning for Drug Pair Scoring". En Thirty-First International Joint Conference on Artificial Intelligence {IJCAI-22}. California: International Joint Conferences on Artificial Intelligence Organization, 2022. http://dx.doi.org/10.24963/ijcai.2022/777.
Texto completoInformes sobre el tema "Drug Side Effect Prediction"
Johnson, Corey, Colton James, Sarah Traughber y Charles Walker. Postoperative Nausea and Vomiting Implications in Neostigmine versus Sugammadex. University of Tennessee Health Science Center, julio de 2021. http://dx.doi.org/10.21007/con.dnp.2021.0005.
Texto completoWideman, Jr., Robert F., Nicholas B. Anthony, Avigdor Cahaner, Alan Shlosberg, Michel Bellaiche y William B. Roush. Integrated Approach to Evaluating Inherited Predictors of Resistance to Pulmonary Hypertension Syndrome (Ascites) in Fast Growing Broiler Chickens. United States Department of Agriculture, diciembre de 2000. http://dx.doi.org/10.32747/2000.7575287.bard.
Texto completo