Artículos de revistas sobre el tema "Droplet disruption"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte los 50 mejores artículos de revistas para su investigación sobre el tema "Droplet disruption".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Explore artículos de revistas sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.
Preiss, Felix Johannes, Teresa Dagenbach, Markus Fischer y Heike Petra Karbstein. "Development of a Pressure Stable Inline Droplet Generator with Live Droplet Size Measurement". ChemEngineering 4, n.º 4 (10 de noviembre de 2020): 60. http://dx.doi.org/10.3390/chemengineering4040060.
Texto completoAdeyo, Oludotun, Patrick J. Horn, SungKyung Lee, Derk D. Binns, Anita Chandrahas, Kent D. Chapman y Joel M. Goodman. "The yeast lipin orthologue Pah1p is important for biogenesis of lipid droplets". Journal of Cell Biology 192, n.º 6 (21 de marzo de 2011): 1043–55. http://dx.doi.org/10.1083/jcb.201010111.
Texto completoKropotova, Svetlana y Pavel Strizhak. "Collisions of Liquid Droplets in a Gaseous Medium under Conditions of Intense Phase Transformations: Review". Energies 14, n.º 19 (27 de septiembre de 2021): 6150. http://dx.doi.org/10.3390/en14196150.
Texto completoOrme, M. "Experiments on droplet collisions, bounce, coalescence and disruption". Progress in Energy and Combustion Science 23, n.º 1 (1997): 65–79. http://dx.doi.org/10.1016/s0360-1285(97)00005-1.
Texto completoGall, Vanessa y Heike P. Karbstein. "Influence of Cavitation and Mixing Conditions on Oil Droplet Size in Simultaneous Homogenization and Mixing (SHM)". ChemEngineering 4, n.º 4 (9 de diciembre de 2020): 64. http://dx.doi.org/10.3390/chemengineering4040064.
Texto completoYong, Ah Pis, Md Aminul Islam y Nurul Hasan. "The Effect of pH and High-Pressure Homogenization on Droplet Size". International Journal of Engineering Materials and Manufacture 2, n.º 4 (10 de diciembre de 2017): 110–22. http://dx.doi.org/10.26776/ijemm.02.04.2017.05.
Texto completoDemidovich, A. V., S. S. Kralinova, P. P. Tkachenko, N. E. Shlegel y R. S. Volkov. "Interaction of Liquid Droplets in Gas and Vapor Flows". Energies 12, n.º 22 (8 de noviembre de 2019): 4256. http://dx.doi.org/10.3390/en12224256.
Texto completoPiskunov, Maxim, Nikita Shlegel, Svetlana Kralinova, Pavel Tkachenko y Olga Vysokomornaya. "Interaction times of homogeneous and heterogeneous droplets in gases". Thermal Science, n.º 00 (2021): 187. http://dx.doi.org/10.2298/tsci190928187p.
Texto completoPreiss, Felix Johannes, Benedikt Mutsch, Christian J. Kähler y Heike Petra Karbstein. "Scaling of Droplet Breakup in High-Pressure Homogenizer Orifices. Part I: Comparison of Velocity Profiles in Scaled Coaxial Orifices". ChemEngineering 5, n.º 1 (7 de febrero de 2021): 7. http://dx.doi.org/10.3390/chemengineering5010007.
Texto completoLieber, J. G. y R. M. Evans. "Disruption of the vimentin intermediate filament system during adipose conversion of 3T3-L1 cells inhibits lipid droplet accumulation". Journal of Cell Science 109, n.º 13 (15 de diciembre de 1996): 3047–58. http://dx.doi.org/10.1242/jcs.109.13.3047.
Texto completoHommel, Angela, Deike Hesse, Wolfgang Völker, Alexander Jaschke, Markus Moser, Thomas Engel, Matthias Blüher et al. "The ARF-Like GTPase ARFRP1 Is Essential for Lipid Droplet Growth and Is Involved in the Regulation of Lipolysis". Molecular and Cellular Biology 30, n.º 5 (28 de diciembre de 2009): 1231–42. http://dx.doi.org/10.1128/mcb.01269-09.
Texto completoLin, Cherng-Yuan, Chein-Ming Lin y Che-Shiung Cheng. "An Experimental Investigation of Burning Droplets of Emulsified Marine Fuel Oils with Water". Journal of Ship Research 39, n.º 01 (1 de marzo de 1995): 95–101. http://dx.doi.org/10.5957/jsr.1995.39.1.95.
Texto completoHo, Yi-Ju, Yuan-Chih Chang y Chih-Kuang Yeh. "Improving Nanoparticle Penetration in Tumors by Vascular Disruption with Acoustic Droplet Vaporization". Theranostics 6, n.º 3 (2016): 392–403. http://dx.doi.org/10.7150/thno.13727.
Texto completoWeibel, Ginny L., Michelle R. Joshi, W. Gray Jerome, Sandra R. Bates, Kevin J. Yu, Michael C. Phillips y George H. Rothblat. "Cytoskeleton disruption in J774 macrophages: Consequences for lipid droplet formation and cholesterol flux". Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids 1821, n.º 3 (marzo de 2012): 464–72. http://dx.doi.org/10.1016/j.bbalip.2011.09.015.
Texto completoJames, Christopher N., Patrick J. Horn, Charlene R. Case, Satinder K. Gidda, Daiyuan Zhang, Robert T. Mullen, John M. Dyer, Richard G. W. Anderson y Kent D. Chapman. "Disruption of theArabidopsisCGI-58 homologue produces Chanarin–Dorfman-like lipid droplet accumulation in plants". Proceedings of the National Academy of Sciences 107, n.º 41 (27 de septiembre de 2010): 17833–38. http://dx.doi.org/10.1073/pnas.0911359107.
Texto completoVladisavljević, Goran T., Jeonghee Surh y Julian D. McClements. "Effect of Emulsifier Type on Droplet Disruption in Repeated Shirasu Porous Glass Membrane Homogenization". Langmuir 22, n.º 10 (mayo de 2006): 4526–33. http://dx.doi.org/10.1021/la053410f.
Texto completoSubitha, Mani, Antonisamy William James, Chinnarasu Sivaprakasam y Vasanthi Nachiappan. "Disruption in phosphate transport affects membrane lipid and lipid droplet homeostasis in Saccharomyces cerevisiae". Journal of Bioenergetics and Biomembranes 52, n.º 4 (27 de mayo de 2020): 215–27. http://dx.doi.org/10.1007/s10863-020-09837-5.
Texto completoVysokomornaya, O. V., A. K. Rebrov, P. A. Strizhak y N. E. Shlegel. "A comparative analysis of the interaction regimes of two drops and their large population in an aerosol cloud". Доклады Академии наук 485, n.º 1 (22 de mayo de 2019): 38–43. http://dx.doi.org/10.31857/s0869-5652485138-43.
Texto completoShlegel, Nikita y Pavel Strizhak. "Collisions of water drops in a gas-vapor environment at high temperatures and vapor concentrations". Thermal Science, n.º 00 (2020): 200. http://dx.doi.org/10.2298/tsci191110200s.
Texto completoTesch, Sabine y Helmar Schubert. "Droplet Deformation and Disruption during the Emulsification in a High-Pressure Homogenizer with an Orifice Valve". Chemie Ingenieur Technik 73, n.º 6 (junio de 2001): 693. http://dx.doi.org/10.1002/1522-2640(200106)73:6<693::aid-cite6932222>3.0.co;2-4.
Texto completoKelemen, Katharina, Anna C. Schuch y Heike P. Schuchmann. "Influence of Flow Conditions in High-Pressure Orifices on Droplet Disruption of Oil-in-Water Emulsions". Chemical Engineering & Technology 37, n.º 7 (6 de junio de 2014): 1227–34. http://dx.doi.org/10.1002/ceat.201400037.
Texto completoSchulze, Ryan J., Shaun G. Weller, Barbara Schroeder, Eugene W. Krueger, Susan Chi, Carol A. Casey y Mark A. McNiven. "Lipid droplet breakdown requires Dynamin 2 for vesiculation of autolysosomal tubules in hepatocytes". Journal of Cell Biology 203, n.º 2 (21 de octubre de 2013): 315–26. http://dx.doi.org/10.1083/jcb.201306140.
Texto completoAdu-Gyamfi, Nana y Dipak K. Sarker. "Interfacial Effects and the Nano-Scale Disruption in Adsorbed-Layer of Acrylate Polymer-Tween 80 Fabricated Steroid-Bearing Emulsions: A Rheological Study of Supramolecular Materials". Nanomaterials 11, n.º 6 (19 de junio de 2021): 1612. http://dx.doi.org/10.3390/nano11061612.
Texto completoMorozov, Andrej V., Anna V. Pityk, Sergej V. Ragulin, Azamat R. Sahipgareev, Aleksandra S. Soshkina y Aleksandr S. Shlyopkin. "Estimation influence of boric acid drop entrainment to its accumulation in the VVER reactor in the case of accident". Nuclear Energy and Technology 4, n.º 1 (18 de octubre de 2018): 65–71. http://dx.doi.org/10.3897/nucet.4.29844.
Texto completoVenkatesh, S. y Z. A. Memish. "SARS: the new challenge to international health and travel medicine". Eastern Mediterranean Health Journal 10, n.º 4-5 (13 de septiembre de 2004): 655–62. http://dx.doi.org/10.26719/2004.10.4-5.655.
Texto completoCosta, H. S., N. C. Toscano, D. L. Hendrix y T. J. Henneberry. "Patterns of Honeydew Droplet Production by Nymphal Stages of Bemisia argentifolii (Homoptera: Aleyrodidae) and Relative Composition of Honeydew Sugars". Journal of Entomological Science 34, n.º 3 (1 de julio de 1999): 305–13. http://dx.doi.org/10.18474/0749-8004-34.3.305.
Texto completoBoulant, Steeve, Paul Targett-Adams y John McLauchlan. "Disrupting the association of hepatitis C virus core protein with lipid droplets correlates with a loss in production of infectious virus". Journal of General Virology 88, n.º 8 (1 de agosto de 2007): 2204–13. http://dx.doi.org/10.1099/vir.0.82898-0.
Texto completoFriedl, Julian David, Christian Steinbring, Sergey Zaichik, Nguyet-Minh Nguyen Le y Andreas Bernkop-Schnürch. "Cellular uptake of self-emulsifying drug-delivery systems: polyethylene glycol versus polyglycerol surface". Nanomedicine 15, n.º 19 (agosto de 2020): 1829–41. http://dx.doi.org/10.2217/nnm-2020-0127.
Texto completoLee, Seon-Jin, Jinglan Zhang, Augustine M. K. Choi y Hong Pyo Kim. "Mitochondrial Dysfunction Induces Formation of Lipid Droplets as a Generalized Response to Stress". Oxidative Medicine and Cellular Longevity 2013 (2013): 1–10. http://dx.doi.org/10.1155/2013/327167.
Texto completoMeyer, Christopher J., Jason K. Norsworthy, Greg R. Kruger y Tom Barber. "Effects of Nozzle Selection and Ground Speed on Efficacy of Liberty and Engenia Applications and Their Implication on Commercial Field Applications". Weed Technology 30, n.º 2 (junio de 2016): 401–14. http://dx.doi.org/10.1614/wt-d-15-00145.1.
Texto completoDutra, Lara, Ole Franz, Veli-Mikko Puupponen y Marja Tiirola. "DNA recovery from Droplet Digital™ PCR emulsions using liquid nitrogen". BioTechniques 69, n.º 6 (diciembre de 2020): 450–54. http://dx.doi.org/10.2144/btn-2020-0076.
Texto completoAsimakopoulou, Anastasia, Kathrin M. Engel, Nikolaus Gassler, Thilo Bracht, Barbara Sitek, Eva M. Buhl, Stavroula Kalampoka et al. "Deletion of Perilipin 5 Protects against Hepatic Injury in Nonalcoholic Fatty Liver Disease via Missing Inflammasome Activation". Cells 9, n.º 6 (28 de mayo de 2020): 1346. http://dx.doi.org/10.3390/cells9061346.
Texto completoBai, Xiaofei, Leng-Jie Huang, Sheng-Wen Chen, Benjamin Nebenfuehr, Brian Wysolmerski, Jui-Ching Wu, Sara K. Olson, Andy Golden y Chao-Wen Wang. "Loss of the seipin gene perturbs eggshell formation in Caenorhabditiselegans". Development 147, n.º 20 (20 de agosto de 2020): dev192997. http://dx.doi.org/10.1242/dev.192997.
Texto completoMaciak, Sebastian, Katarzyna Michalak, Shiv D. Kale y Pawel Michalak. "Nucleolar Dominance and Repression of 45S Ribosomal RNA Genes in Hybrids between Xenopus borealis and X. muelleri (2n = 36)". Cytogenetic and Genome Research 149, n.º 4 (2016): 290–96. http://dx.doi.org/10.1159/000450665.
Texto completovan Staden, Daniélle, Jeanetta du Plessis y Joe Viljoen. "Development of a Self-Emulsifying Drug Delivery System for Optimized Topical Delivery of Clofazimine". Pharmaceutics 12, n.º 6 (8 de junio de 2020): 523. http://dx.doi.org/10.3390/pharmaceutics12060523.
Texto completoSun, Hong, Yang Yuan y Zi-Lin Sun. "Cholesterol Contributes to Diabetic Nephropathy through SCAP-SREBP-2 Pathway". International Journal of Endocrinology 2013 (2013): 1–8. http://dx.doi.org/10.1155/2013/592576.
Texto completoSun, Zhaoyu, Sain Shushanov, Derek LeRoith y Teresa L. Wood. "Decreased IGF Type 1 Receptor Signaling in Mammary Epithelium during Pregnancy Leads to Reduced Proliferation, Alveolar Differentiation, and Expression of Insulin Receptor Substrate (IRS)-1 and IRS-2". Endocrinology 152, n.º 8 (31 de mayo de 2011): 3233–45. http://dx.doi.org/10.1210/en.2010-1296.
Texto completoRahdar, Abbas, Saman Sargazi, Mahmood Barani, Sheida Shahraki, Fakhara Sabir y M. Aboudzadeh. "Lignin-Stabilized Doxorubicin Microemulsions: Synthesis, Physical Characterization, and In Vitro Assessments". Polymers 13, n.º 4 (21 de febrero de 2021): 641. http://dx.doi.org/10.3390/polym13040641.
Texto completoKhurshed, Mohammed, Remco J. Molenaar, Myra E. van Linde, Ron A. Mathôt, Eduard A. Struys, Tom van Wezel, Cornelis J. F. van Noorden, Heinz-Josef Klümpen, Judith V. M. G. Bovée y Johanna W. Wilmink. "A Phase Ib Clinical Trial of Metformin and Chloroquine in Patients with IDH1-Mutated Solid Tumors". Cancers 13, n.º 10 (19 de mayo de 2021): 2474. http://dx.doi.org/10.3390/cancers13102474.
Texto completoMosquera, Jose Verdezoto, Meghan C. Bacher y James R. Priess. "Nuclear lipid droplets and nuclear damage in Caenorhabditis elegans". PLOS Genetics 17, n.º 6 (16 de junio de 2021): e1009602. http://dx.doi.org/10.1371/journal.pgen.1009602.
Texto completoGeorgiadis, Christos, Jane Rasaiyaah, Soragia Athina Gkazi, Roland Preece, Annie Etuk, Abraham Christi y Waseem Qasim. "Universal' Fratricide-Resistant CAR T Cells Against T Cell Leukemia Generated By Coupled & Uncoupled Deamination Mediated Base Editing". Blood 134, Supplement_1 (13 de noviembre de 2019): 3219. http://dx.doi.org/10.1182/blood-2019-130057.
Texto completoOjha, Pawan Kumar, Raktim Maji y Srinibas Karmakar. "Effect of crystallinity on droplet regression and disruptive burning characteristics of nanofuel droplets containing amorphous and crystalline boron nanoparticles". Combustion and Flame 188 (febrero de 2018): 412–27. http://dx.doi.org/10.1016/j.combustflame.2017.10.005.
Texto completoBelyaev, Dmitry, Julian Schütt, Bergoi Ibarlucea, Taiuk Rim, Larysa Baraban y Gianaurelio Cuniberti. "Nanosensors-Assisted Quantitative Analysis of Biochemical Processes in Droplets". Micromachines 11, n.º 2 (26 de enero de 2020): 138. http://dx.doi.org/10.3390/mi11020138.
Texto completoMuhammad, Aadil, Rajashekhar Pendyala y Nejat Rahmanian. "CFD Simulation of Droplet Formation under Various Parameters in Prilling Process". Applied Mechanics and Materials 625 (septiembre de 2014): 394–97. http://dx.doi.org/10.4028/www.scientific.net/amm.625.394.
Texto completoPiskunov, M. V., N. E. Shlegel y P. A. Strizhak. "Disruption of colliding liquid droplets with different surface geometries". Powder Technology 355 (octubre de 2019): 526–34. http://dx.doi.org/10.1016/j.powtec.2019.07.060.
Texto completoZhu, Jialong, Zhong Wang, Ruina Li y Shuai Liu. "Experimental Research on the Disruptive Evaporation and the Motion Characteristics of Secondary Droplets for Emulsified Biodiesel with a Suspended Droplet Configuration". ACS Omega 6, n.º 28 (9 de julio de 2021): 17848–60. http://dx.doi.org/10.1021/acsomega.1c01091.
Texto completoTakahashi, F., I. J. Heilweil y F. L. Dryer. "Disruptive Burning Mechanism of Free Slurry Droplets". Combustion Science and Technology 65, n.º 1 (1 de mayo de 1989): 151–65. http://dx.doi.org/10.1080/00102208908924046.
Texto completoWong, S. c. y S. R. Turns. "Disruptive Burning of Aluminum/arbon Slurry Droplets". Combustion Science and Technology 66, n.º 1-3 (julio de 1989): 75–92. http://dx.doi.org/10.1080/00102208908947140.
Texto completoKim, YoungJun y James C. Hermanson. "Disruption of Volatile and Nonvolatile Droplets Under Locally Supersonic Conditions". AIAA Journal 50, n.º 8 (agosto de 2012): 1754–65. http://dx.doi.org/10.2514/1.j051582.
Texto completoKosif, Irem, Mengmeng Cui, Thomas P. Russell y Todd Emrick. "Triggered In situ Disruption and Inversion of Nanoparticle-Stabilized Droplets". Angewandte Chemie International Edition 52, n.º 26 (13 de mayo de 2013): 6620–23. http://dx.doi.org/10.1002/anie.201302112.
Texto completo