Literatura académica sobre el tema "Dot product kernels"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Dot product kernels".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Dot product kernels"
Menegatto, V. A., C. P. Oliveira y A. P. Peron. "Conditionally positive definite dot product kernels". Journal of Mathematical Analysis and Applications 321, n.º 1 (septiembre de 2006): 223–41. http://dx.doi.org/10.1016/j.jmaa.2005.08.024.
Texto completoMenegatto, V. A., C. P. Oliveira y Ana P. Peron. "On conditionally positive definite dot product kernels". Acta Mathematica Sinica, English Series 24, n.º 7 (julio de 2008): 1127–38. http://dx.doi.org/10.1007/s10114-007-6227-4.
Texto completoLu, Fangyan y Hongwei Sun. "Positive definite dot product kernels in learning theory". Advances in Computational Mathematics 22, n.º 2 (febrero de 2005): 181–98. http://dx.doi.org/10.1007/s10444-004-3140-6.
Texto completoGriffiths, Matthew P., Denys Grombacher, Mason A. Kass, Mathias Ø. Vang, Lichao Liu y Jakob Juul Larsen. "A surface NMR forward in a dot product". Geophysical Journal International 234, n.º 3 (27 de abril de 2023): 2284–90. http://dx.doi.org/10.1093/gji/ggad203.
Texto completoDonini, Michele y Fabio Aiolli. "Learning deep kernels in the space of dot product polynomials". Machine Learning 106, n.º 9-10 (7 de noviembre de 2016): 1245–69. http://dx.doi.org/10.1007/s10994-016-5590-8.
Texto completoFilippas, Dionysios, Chrysostomos Nicopoulos y Giorgos Dimitrakopoulos. "Templatized Fused Vector Floating-Point Dot Product for High-Level Synthesis". Journal of Low Power Electronics and Applications 12, n.º 4 (17 de octubre de 2022): 56. http://dx.doi.org/10.3390/jlpea12040056.
Texto completoBishwas, Arit Kumar, Ashish Mani y Vasile Palade. "Gaussian kernel in quantum learning". International Journal of Quantum Information 18, n.º 03 (abril de 2020): 2050006. http://dx.doi.org/10.1142/s0219749920500069.
Texto completoXiao, Lechao, Hong Hu, Theodor Misiakiewicz, Yue M. Lu y Jeffrey Pennington. "Precise learning curves and higher-order scaling limits for dot-product kernel regression *". Journal of Statistical Mechanics: Theory and Experiment 2023, n.º 11 (1 de noviembre de 2023): 114005. http://dx.doi.org/10.1088/1742-5468/ad01b7.
Texto completoIakymchuk, Roman, Stef Graillat, David Defour y Enrique S. Quintana-Ortí. "Hierarchical approach for deriving a reproducible unblocked LU factorization". International Journal of High Performance Computing Applications 33, n.º 5 (17 de marzo de 2019): 791–803. http://dx.doi.org/10.1177/1094342019832968.
Texto completoAzevedo, D. y V. A. Menegatto. "Sharp estimates for eigenvalues of integral operators generated by dot product kernels on the sphere". Journal of Approximation Theory 177 (enero de 2014): 57–68. http://dx.doi.org/10.1016/j.jat.2013.10.002.
Texto completoTesis sobre el tema "Dot product kernels"
Wacker, Jonas. "Random features for dot product kernels and beyond". Electronic Thesis or Diss., Sorbonne université, 2022. http://www.theses.fr/2022SORUS241.
Texto completoDot product kernels, such as polynomial and exponential (softmax) kernels, are among the most widely used kernels in machine learning, as they enable modeling the interactions between input features, which is crucial in applications like computer vision, natural language processing, and recommender systems. However, a fundamental drawback of kernel-based statistical models is their limited scalability to a large number of inputs, which requires resorting to approximations. In this thesis, we study techniques to linearize kernel-based methods by means of random feature approximations and we focus on the approximation of polynomial kernels and more general dot product kernels to make these kernels more useful in large scale learning. In particular, we focus on a variance analysis as a main tool to study and improve the statistical efficiency of such sketches
Capítulos de libros sobre el tema "Dot product kernels"
Chen, Degang, Qiang He, Chunru Dong y Xizhao Wang. "A Method to Construct the Mapping to the Feature Space for the Dot Product Kernels". En Advances in Machine Learning and Cybernetics, 918–29. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006. http://dx.doi.org/10.1007/11739685_96.
Texto completoLauriola, Ivano, Mirko Polato y Fabio Aiolli. "Radius-Margin Ratio Optimization for Dot-Product Boolean Kernel Learning". En Artificial Neural Networks and Machine Learning – ICANN 2017, 183–91. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-68612-7_21.
Texto completoActas de conferencias sobre el tema "Dot product kernels"
Azevedo, Douglas y Valdir A. Menegatto. "Eigenvalues of dot-product kernels on the sphere". En XXXV CNMAC - Congresso Nacional de Matemática Aplicada e Computacional. SBMAC, 2015. http://dx.doi.org/10.5540/03.2015.003.01.0039.
Texto completoChen, G. Y. y P. Bhattacharya. "Function Dot Product Kernels for Support Vector Machine". En 18th International Conference on Pattern Recognition (ICPR'06). IEEE, 2006. http://dx.doi.org/10.1109/icpr.2006.586.
Texto completoRashed, Muhammad Rashedul Haq, Sumit Kumar Jha y Rickard Ewetz. "Discovering the in-Memory Kernels of 3D Dot-Product Engines". En ASPDAC '23: 28th Asia and South Pacific Design Automation Conference. New York, NY, USA: ACM, 2023. http://dx.doi.org/10.1145/3566097.3567855.
Texto completoLi Zhang, Zhou Weida, Ying Lin y Licheng Jiao. "Support vector novelty detection with dot product kernels for non-spherical data". En 2008 International Conference on Information and Automation (ICIA). IEEE, 2008. http://dx.doi.org/10.1109/icinfa.2008.4607965.
Texto completoVenkatesan, Sibi, James K. Miller, Jeff Schneider y Artur Dubrawski. "Scaling Active Search using Linear Similarity Functions". En Twenty-Sixth International Joint Conference on Artificial Intelligence. California: International Joint Conferences on Artificial Intelligence Organization, 2017. http://dx.doi.org/10.24963/ijcai.2017/401.
Texto completoDe Jesús Rivera, Edward, Fanny Besem-Cordova y Jean-Charles Bonaccorsi. "Optimization of a High Pressure Industrial Fan". En ASME Turbo Expo 2021: Turbomachinery Technical Conference and Exposition. American Society of Mechanical Engineers, 2021. http://dx.doi.org/10.1115/gt2021-58967.
Texto completo