Artículos de revistas sobre el tema "DNA-free gene editing"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte los 50 mejores artículos de revistas para su investigación sobre el tema "DNA-free gene editing".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Explore artículos de revistas sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.
Haas, Amanda. "DNA-Free CRISPR-Cas9 Gene Editing". Genetic Engineering & Biotechnology News 36, n.º 17 (octubre de 2016): 16–17. http://dx.doi.org/10.1089/gen.36.17.07.
Texto completoTsanova, Tsveta, Lidia Stefanova, Lora Topalova, Atanas Atanasov y Ivelin Pantchev. "DNA-free gene editing in plants: a brief overview". Biotechnology & Biotechnological Equipment 35, n.º 1 (11 de diciembre de 2020): 131–38. http://dx.doi.org/10.1080/13102818.2020.1858159.
Texto completoZhang, Yi y Caixia Gao. "Recent advances in DNA-free editing and precise base editing in plants". Emerging Topics in Life Sciences 1, n.º 2 (10 de noviembre de 2017): 161–68. http://dx.doi.org/10.1042/etls20170021.
Texto completoHe, Yubing, Michael Mudgett y Yunde Zhao. "Advances in gene editing without residual transgenes in plants". Plant Physiology 188, n.º 4 (10 de diciembre de 2021): 1757–68. http://dx.doi.org/10.1093/plphys/kiab574.
Texto completoBrandt, Camilla Blunk, Sofie Vestergaard Fonager, János Haskó, Rikke Bek Helmig, Søren Degn, Lars Bolund, Niels Jessen, Lin Lin y Yonglun Luo. "HIF1A Knockout by Biallelic and Selection-Free CRISPR Gene Editing in Human Primary Endothelial Cells with Ribonucleoprotein Complexes". Biomolecules 13, n.º 1 (22 de diciembre de 2022): 23. http://dx.doi.org/10.3390/biom13010023.
Texto completoNasri, Masoud, Perihan Mir, Benjamin Dannenmann, Diana Amend, Tessa Skroblyn, Yun Xu, Klaus Schulze-Osthoff, Maksim Klimiankou, Karl Welte y Julia Skokowa. "Fluorescent labeling of CRISPR/Cas9 RNP for gene knockout in HSPCs and iPSCs reveals an essential role for GADD45b in stress response". Blood Advances 3, n.º 1 (8 de enero de 2019): 63–71. http://dx.doi.org/10.1182/bloodadvances.2017015511.
Texto completoMushtaq, Muntazir, Aejaz Ahmad Dar, Milan Skalicky, Anshika Tyagi, Nancy Bhagat, Umer Basu, Basharat Ahmad Bhat et al. "CRISPR-Based Genome Editing Tools: Insights into Technological Breakthroughs and Future Challenges". Genes 12, n.º 6 (24 de mayo de 2021): 797. http://dx.doi.org/10.3390/genes12060797.
Texto completoBadhan, Sapna, Andrew S. Ball y Nitin Mantri. "First Report of CRISPR/Cas9 Mediated DNA-Free Editing of 4CL and RVE7 Genes in Chickpea Protoplasts". International Journal of Molecular Sciences 22, n.º 1 (1 de enero de 2021): 396. http://dx.doi.org/10.3390/ijms22010396.
Texto completoWang, Chengkun, Yuanhao Qu, Jason K. W. Cheng, Nicholas W. Hughes, Qianhe Zhang, Mengdi Wang y Le Cong. "dCas9-based gene editing for cleavage-free genomic knock-in of long sequences". Nature Cell Biology 24, n.º 2 (febrero de 2022): 268–78. http://dx.doi.org/10.1038/s41556-021-00836-1.
Texto completoAriga, Hirotaka, Seiichi Toki y Kazuhiro Ishibashi. "Potato Virus X Vector-Mediated DNA-Free Genome Editing in Plants". Plant and Cell Physiology 61, n.º 11 (29 de septiembre de 2020): 1946–53. http://dx.doi.org/10.1093/pcp/pcaa123.
Texto completoSant’Ana, Rodrigo Ribeiro Arnt, Clarissa Alves Caprestano, Rubens Onofre Nodari y Sarah Zanon Agapito-Tenfen. "PEG-Delivered CRISPR-Cas9 Ribonucleoproteins System for Gene-Editing Screening of Maize Protoplasts". Genes 11, n.º 9 (2 de septiembre de 2020): 1029. http://dx.doi.org/10.3390/genes11091029.
Texto completoZhang, Chao, Shanhe Liu, Xuan Li, Ruixuan Zhang y Jun Li. "Virus-Induced Gene Editing and Its Applications in Plants". International Journal of Molecular Sciences 23, n.º 18 (6 de septiembre de 2022): 10202. http://dx.doi.org/10.3390/ijms231810202.
Texto completoFerenczi, Aron, Douglas Euan Pyott, Andromachi Xipnitou y Attila Molnar. "Efficient targeted DNA editing and replacement in Chlamydomonas reinhardtii using Cpf1 ribonucleoproteins and single-stranded DNA". Proceedings of the National Academy of Sciences 114, n.º 51 (5 de diciembre de 2017): 13567–72. http://dx.doi.org/10.1073/pnas.1710597114.
Texto completoBollen, Yannik, Joris H. Hageman, Petra van Leenen, Lucca L. M. Derks, Bas Ponsioen, Julian R. Buissant des Amorie, Ingrid Verlaan-Klink et al. "Efficient and error-free fluorescent gene tagging in human organoids without double-strand DNA cleavage". PLOS Biology 20, n.º 1 (28 de enero de 2022): e3001527. http://dx.doi.org/10.1371/journal.pbio.3001527.
Texto completoKlimek-Chodacka, Magdalena, Miron Gieniec y Rafal Baranski. "Multiplex Site-Directed Gene Editing Using Polyethylene Glycol-Mediated Delivery of CRISPR gRNA:Cas9 Ribonucleoprotein (RNP) Complexes to Carrot Protoplasts". International Journal of Molecular Sciences 22, n.º 19 (4 de octubre de 2021): 10740. http://dx.doi.org/10.3390/ijms221910740.
Texto completoChen, Xiaoyu, Francesca Tasca, Qian Wang, Jin Liu, Josephine M. Janssen, Marcella D. Brescia, Milena Bellin et al. "Expanding the editable genome and CRISPR–Cas9 versatility using DNA cutting-free gene targeting based on in trans paired nicking". Nucleic Acids Research 48, n.º 2 (4 de diciembre de 2019): 974–95. http://dx.doi.org/10.1093/nar/gkz1121.
Texto completoXiu, Kemao, Laura Saunders, Luan Wen, Jinxue Ruan, Ruonan Dong, Jun Song, Dongshan Yang et al. "Delivery of CRISPR/Cas9 Plasmid DNA by Hyperbranched Polymeric Nanoparticles Enables Efficient Gene Editing". Cells 12, n.º 1 (30 de diciembre de 2022): 156. http://dx.doi.org/10.3390/cells12010156.
Texto completoKang, Beum-Chang, Su-Ji Bae, Seonghyun Lee, Jeong Sun Lee, Annie Kim, Hyunji Lee, Gayoung Baek, Huiyun Seo, Jihun Kim y Jin-Soo Kim. "Chloroplast and mitochondrial DNA editing in plants". Nature Plants 7, n.º 7 (julio de 2021): 899–905. http://dx.doi.org/10.1038/s41477-021-00943-9.
Texto completoChen, Kunling, Yanpeng Wang, Rui Zhang, Huawei Zhang y Caixia Gao. "CRISPR/Cas Genome Editing and Precision Plant Breeding in Agriculture". Annual Review of Plant Biology 70, n.º 1 (29 de abril de 2019): 667–97. http://dx.doi.org/10.1146/annurev-arplant-050718-100049.
Texto completoTurner, Bryan. "Epigenetics can free us from the tyranny of selfish DNA". Biochemist 39, n.º 5 (1 de octubre de 2017): 4–7. http://dx.doi.org/10.1042/bio03905004.
Texto completoYan, Fang, Jingwen Wang, Sujie Zhang, Zhenwan Lu, Shaofang Li, Zhiyuan Ji, Congfeng Song et al. "CRISPR/FnCas12a-mediated efficient multiplex and iterative genome editing in bacterial plant pathogens without donor DNA templates". PLOS Pathogens 19, n.º 1 (10 de enero de 2023): e1010961. http://dx.doi.org/10.1371/journal.ppat.1010961.
Texto completoLin, Choun-Sea, Chen-Tran Hsu, Yu-Hsuan Yuan, Po-Xing Zheng, Fu-Hui Wu, Qiao-Wei Cheng, Yu-Lin Wu et al. "DNA-free CRISPR-Cas9 gene editing of wild tetraploid tomato Solanum peruvianum using protoplast regeneration". Plant Physiology 188, n.º 4 (28 de enero de 2022): 1917–30. http://dx.doi.org/10.1093/plphys/kiac022.
Texto completoKim, Daesik, Kevin Luk, Scot A. Wolfe y Jin-Soo Kim. "Evaluating and Enhancing Target Specificity of Gene-Editing Nucleases and Deaminases". Annual Review of Biochemistry 88, n.º 1 (20 de junio de 2019): 191–220. http://dx.doi.org/10.1146/annurev-biochem-013118-111730.
Texto completoNascimento, Fernanda dos Santos, Anelita de Jesus Rocha, Julianna Matos da Silva Soares, Marcelly Santana Mascarenhas, Mileide dos Santos Ferreira, Lucymeire Souza Morais Lino, Andresa Priscila de Souza Ramos et al. "Gene Editing for Plant Resistance to Abiotic Factors: A Systematic Review". Plants 12, n.º 2 (9 de enero de 2023): 305. http://dx.doi.org/10.3390/plants12020305.
Texto completoRyu, J., W. Chan, F. Carvalho, E. Mishler, J. Hennebold y C. Hanna. "109 Utilising cell-free DNA for detection of gene editing outcomes in rhesus macaque embryos". Reproduction, Fertility and Development 34, n.º 2 (2022): 291. http://dx.doi.org/10.1071/rdv34n2ab109.
Texto completoVeillet, Florian, Laura Perrot, Laura Chauvin, Marie-Paule Kermarrec, Anouchka Guyon-Debast, Jean-Eric Chauvin, Fabien Nogué y Marianne Mazier. "Transgene-Free Genome Editing in Tomato and Potato Plants Using Agrobacterium-Mediated Delivery of a CRISPR/Cas9 Cytidine Base Editor". International Journal of Molecular Sciences 20, n.º 2 (18 de enero de 2019): 402. http://dx.doi.org/10.3390/ijms20020402.
Texto completoAsaoka, Mariko, Takashi Ishikawa, Kazuaki Takabe y Santosh K. Patnaik. "APOBEC3-Mediated RNA Editing in Breast Cancer is Associated with Heightened Immune Activity and Improved Survival". International Journal of Molecular Sciences 20, n.º 22 (10 de noviembre de 2019): 5621. http://dx.doi.org/10.3390/ijms20225621.
Texto completoZegeye, Workie Anley, Mesfin Tsegaw, Yingxin Zhang y Liyong Cao. "CRISPR-Based Genome Editing: Advancements and Opportunities for Rice Improvement". International Journal of Molecular Sciences 23, n.º 8 (18 de abril de 2022): 4454. http://dx.doi.org/10.3390/ijms23084454.
Texto completoSchnütgen, Frank, Duran Sürün, Joachim Schwäble, Ana Tomasovic, Ralf Kühn, Stefan Stein, Nina Kurrle, Hubert Serve, Erhard Seifried y Harald von Melchner. "High Efficiency Gene Correction in Hematopoietic Cells By Template-Free Crispr/Cas9 Genome Editing". Blood 128, n.º 22 (2 de diciembre de 2016): 3507. http://dx.doi.org/10.1182/blood.v128.22.3507.3507.
Texto completoShin, Yun-Hee y Young-Doo Park. "CRISPR/Cas9-Mediated Mutagenesis of BrLEAFY Delays the Bolting Time in Chinese Cabbage (Brassica rapa L. ssp. pekinensis)". International Journal of Molecular Sciences 24, n.º 1 (29 de diciembre de 2022): 541. http://dx.doi.org/10.3390/ijms24010541.
Texto completoPavese, Vera, Andrea Moglia, Silvia Abbà, Anna Maria Milani, Daniela Torello Marinoni, Elena Corredoira, Maria Teresa Martínez y Roberto Botta. "First Report on Genome Editing via Ribonucleoprotein (RNP) in Castanea sativa Mill." International Journal of Molecular Sciences 23, n.º 10 (20 de mayo de 2022): 5762. http://dx.doi.org/10.3390/ijms23105762.
Texto completoMikl, Marie C., Ian N. Watt, Mason Lu, Wolf Reik, Sarah L. Davies, Michael S. Neuberger y Cristina Rada. "Mice Deficient in APOBEC2 and APOBEC3". Molecular and Cellular Biology 25, n.º 16 (15 de agosto de 2005): 7270–77. http://dx.doi.org/10.1128/mcb.25.16.7270-7277.2005.
Texto completoHewes, Amanda M., Brett M. Sansbury y Eric B. Kmiec. "The Diversity of Genetic Outcomes from CRISPR/Cas Gene Editing is Regulated by the Length of the Symmetrical Donor DNA Template". Genes 11, n.º 10 (30 de septiembre de 2020): 1160. http://dx.doi.org/10.3390/genes11101160.
Texto completoKhalaf, Khalil, Krzysztof Janowicz, Marta Dyszkiewicz-Konwińska, Greg Hutchings, Claudia Dompe, Lisa Moncrieff, Maurycy Jankowski et al. "CRISPR/Cas9 in Cancer Immunotherapy: Animal Models and Human Clinical Trials". Genes 11, n.º 8 (11 de agosto de 2020): 921. http://dx.doi.org/10.3390/genes11080921.
Texto completoWang, Liping, You Wang, Amina Makhmoudova, Felix Nitschke, Ian J. Tetlow y Michael J. Emes. "CRISPR–Cas9-mediated editing of starch branching enzymes results in altered starch structure in Brassica napus". Plant Physiology 188, n.º 4 (22 de noviembre de 2021): 1866–86. http://dx.doi.org/10.1093/plphys/kiab535.
Texto completoKivrak, Ezgi, Tekle Pauzaite, Nikki Copeland, John Hardy, Pinar Kara, Melike Firlak, Atike Yardimci, Selahattin Yilmaz, Fahreddin Palaz y Mehmet Ozsoz. "Detection of CRISPR-Cas9-Mediated Mutations Using a Carbon Nanotube-Modified Electrochemical Genosensor". Biosensors 11, n.º 1 (8 de enero de 2021): 17. http://dx.doi.org/10.3390/bios11010017.
Texto completoKivrak, Ezgi, Tekle Pauzaite, Nikki A. Copeland, John G. Hardy, Pinar Kara, Melike Firlak, Atike I. Yardimci, Selahattin Yilmaz, Fahreddin Palaz y Mehmet Ozsoz. "Detection of CRISPR-Cas9-Mediated Mutations Using a Carbon Nanotube-Modified Electrochemical Genosensor". Biosensors 11, n.º 1 (8 de enero de 2021): 17. http://dx.doi.org/10.3390/bios11010017.
Texto completoRomeo, Lucia, Antonia Esposito, Alberto Bernacchi, Daniele Colazzo, Alberto Vassallo, Marco Zaccaroni, Renato Fani y Sara Del Duca. "Application of Cloning-Free Genome Engineering to Escherichia coli". Microorganisms 11, n.º 1 (15 de enero de 2023): 215. http://dx.doi.org/10.3390/microorganisms11010215.
Texto completoTeng, Kaichong, Xin Wang, Xinying Guo, Yaoguang Liu y Rongbai Li. "Generation of a New Glutinous Photothermosensitive Genic-Male-Sterile (PTGMS) Line by CRISPR/Cas9-Directed Mutagenesis of Wx in Rice (Oryza sativa L.)". Agriculture 11, n.º 11 (24 de octubre de 2021): 1044. http://dx.doi.org/10.3390/agriculture11111044.
Texto completoTong, Yaojun, Christopher M. Whitford, Helene L. Robertsen, Kai Blin, Tue S. Jørgensen, Andreas K. Klitgaard, Tetiana Gren, Xinglin Jiang, Tilmann Weber y Sang Yup Lee. "Highly efficient DSB-free base editing for streptomycetes with CRISPR-BEST". Proceedings of the National Academy of Sciences 116, n.º 41 (23 de septiembre de 2019): 20366–75. http://dx.doi.org/10.1073/pnas.1913493116.
Texto completoBernard, Guillaume, David Gagneul, Harmony Alves Dos Santos, Audrey Etienne, Jean-Louis Hilbert y Caroline Rambaud. "Efficient Genome Editing Using CRISPR/Cas9 Technology in Chicory". International Journal of Molecular Sciences 20, n.º 5 (6 de marzo de 2019): 1155. http://dx.doi.org/10.3390/ijms20051155.
Texto completoBeaton, B. P., K. Lee, J. H. Kim, R. S. Prather y K. D. Wells. "220 LENGTH OF DONOR DNA HOMOLOGY TO FACILITATE BI-ALLELIC GENE TARGETING DURING TRANSCRIPTION ACTIVATOR-LIKE EFFECTOR NUCLEASE-MEDIATED GENE TARGETING". Reproduction, Fertility and Development 26, n.º 1 (2014): 224. http://dx.doi.org/10.1071/rdv26n1ab220.
Texto completoMurphy, Brian G., Tatiana Wolf, Helena Vogel, Diego Castillo y Kevin Woolard. "An RNA-Directed Gene Editing Strategy for Attenuating the Infectious Potential of Feline Immunodeficiency Virus-Infected Cells: A Proof of Concept". Viruses 12, n.º 5 (5 de mayo de 2020): 511. http://dx.doi.org/10.3390/v12050511.
Texto completoTong, Yu, Shizhen Shen, Hui Jiang y Zhi Chen. "Application of Digital PCR in Detecting Human Diseases Associated Gene Mutation". Cellular Physiology and Biochemistry 43, n.º 4 (2017): 1718–30. http://dx.doi.org/10.1159/000484035.
Texto completoFang, Yaoyu, Jinlian Yang, Xinying Guo, Yufen Qin, Hai Zhou, Shanyue Liao, Fang Liu, Baoxiang Qin, Chuxiong Zhuang y Rongbai Li. "CRISPR/Cas9-Induced Mutagenesis of TMS5 Confers Thermosensitive Genic Male Sterility by Influencing Protein Expression in Rice (Oryza sativa L.)". International Journal of Molecular Sciences 23, n.º 15 (28 de julio de 2022): 8354. http://dx.doi.org/10.3390/ijms23158354.
Texto completoCarey-Fung, Oscar, Martin O’Brien, Jesse T. Beasley y Alexander A. T. Johnson. "A Model to Incorporate the bHLH Transcription Factor OsIRO3 within the Rice Iron Homeostasis Regulatory Network". International Journal of Molecular Sciences 23, n.º 3 (31 de enero de 2022): 1635. http://dx.doi.org/10.3390/ijms23031635.
Texto completoSansbury, Brett M., Amanda M. Wagner, Erez Nitzan, Gabi Tarcic y Eric B. Kmiec. "CRISPR-Directed In Vitro Gene Editing of Plasmid DNA Catalyzed by Cpf1 (Cas12a) Nuclease and a Mammalian Cell-Free Extract". CRISPR Journal 1, n.º 2 (abril de 2018): 191–202. http://dx.doi.org/10.1089/crispr.2018.0006.
Texto completoHong, Joon Ki, Eun Jung Suh, Sang Ryeol Park, Jihee Park y Yeon-Hee Lee. "Multiplex CRISPR/Cas9 Mutagenesis of BrVRN1 Delays Flowering Time in Chinese Cabbage (Brassica rapa L. ssp. pekinensis)". Agriculture 11, n.º 12 (17 de diciembre de 2021): 1286. http://dx.doi.org/10.3390/agriculture11121286.
Texto completoNasri, Masoud, Perihan Mir, Benjamin Dannenmann, Diana Amend, Yun Xu, Anna Solovyeva, Sylwia Stefanczyk et al. "A Method to Fluorescently Label the CRISPR/Cas9-gRNA RNP Complexes Enables Enrichment of Clinical-Grade Gene-Edited Primary Hematopoietic Stem Cells and iPSCs". Blood 132, Supplement 1 (29 de noviembre de 2018): 1108. http://dx.doi.org/10.1182/blood-2018-99-114844.
Texto completoUnnikrishnan, Aparna, Carlos Amero, Deepak Kumar Yadav, Kye Stachowski, Devante Potter y Mark P. Foster. "DNA binding induces a cis-to-trans switch in Cre recombinase to enable intasome assembly". Proceedings of the National Academy of Sciences 117, n.º 40 (23 de septiembre de 2020): 24849–58. http://dx.doi.org/10.1073/pnas.2011448117.
Texto completo