Literatura académica sobre el tema "DNA Effect of radiation on"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "DNA Effect of radiation on".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "DNA Effect of radiation on"
Jalal, Nasir, Saba Haq, Namrah Anwar, Saadiya Nazeer y Umar Saeed. "Radiation induced bystander effect and DNA damage". Journal of Cancer Research and Therapeutics 10, n.º 4 (2014): 819. http://dx.doi.org/10.4103/0973-1482.144587.
Texto completoKalinich, John F., George N. Catravas y Stephen L. Snyder. "The Effect of γ Radiation on DNA Methylation". Radiation Research 117, n.º 2 (febrero de 1989): 185. http://dx.doi.org/10.2307/3577319.
Texto completoRita, Ghosh y Hansda Surajit. "Targeted and non-targeted effects of radiation in mammalian cells: An overview". Archives of Biotechnology and Biomedicine 5, n.º 1 (12 de abril de 2021): 013–19. http://dx.doi.org/10.29328/journal.abb.1001023.
Texto completoYokoya, A., N. Shikazono, K. Fujii, A. Urushibara, K. Akamatsu y R. Watanabe. "DNA damage induced by the direct effect of radiation". Radiation Physics and Chemistry 77, n.º 10-12 (octubre de 2008): 1280–85. http://dx.doi.org/10.1016/j.radphyschem.2008.05.021.
Texto completoGeorgakilas, Alexandros G. "Role of DNA Damage and Repair in Detrimental Effects of Ionizing Radiation". Radiation 1, n.º 1 (22 de octubre de 2020): 1–4. http://dx.doi.org/10.3390/radiation1010001.
Texto completoTuraeva, N. N., S. Schroeder y B. L. Oksengendler. "Effect of Anderson Localization on Auger Destruction of DNA". ISRN Biophysics 2012 (5 de diciembre de 2012): 1–3. http://dx.doi.org/10.5402/2012/972085.
Texto completoGaneva, Roumiana L. y Lyuben M. Tzvetkov. "Effect of Cisplatin Alone and in Combination with γ-Radiation on the Initiation of DNA Synthesis in Friend Leukemia Cells". Zeitschrift für Naturforschung C 52, n.º 5-6 (1 de junio de 1997): 405–7. http://dx.doi.org/10.1515/znc-1997-5-620.
Texto completoGreubel, Christoph, Volker Hable, Guido A. Drexler, Andreas Hauptner, Steffen Dietzel, Hilmar Strickfaden, Iris Baur et al. "Competition effect in DNA damage response". Radiation and Environmental Biophysics 47, n.º 4 (23 de julio de 2008): 423–29. http://dx.doi.org/10.1007/s00411-008-0182-z.
Texto completoBangruwa, Neeraj, Manish Srivastava y Debabrata Mishra. "Radiation-Induced Effect on Spin-Selective Electron Transfer through Self-Assembled Monolayers of ds-DNA". Magnetochemistry 7, n.º 7 (8 de julio de 2021): 98. http://dx.doi.org/10.3390/magnetochemistry7070098.
Texto completorezaiekahkhaie, sakine y Khadije Rezaie Keikhaie. "The Role of Ionizing Radiation in Cellular Signaling Pathways, Mutagenesis, and Carcinogenesis". International Journal of Basic Science in Medicine 3, n.º 4 (13 de enero de 2019): 147–53. http://dx.doi.org/10.15171/ijbsm.2018.26.
Texto completoTesis sobre el tema "DNA Effect of radiation on"
MacPhail, Susan Helen. "Effect of intercellular contact on radiation-induced DNA damage". Thesis, University of British Columbia, 1988. http://hdl.handle.net/2429/27986.
Texto completoMedicine, Faculty of
Pathology and Laboratory Medicine, Department of
Graduate
Bajinskis, Ainars. "Studies of DNA repair strategies in response to complex DNA damages". Doctoral thesis, Stockholms universitet, Institutionen för genetik, mikrobiologi och toxikologi, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-72472.
Texto completoAt the time of doctoral defense, the following paper was unpublished and had a status as follows: Paper 2: Manuscript.
Morabito, Brian Joseph. "Quantitating radiation induced DNA breaks by capillary electrophoresis". Thesis, Georgia Institute of Technology, 1997. http://hdl.handle.net/1853/16339.
Texto completoBraddock, M. "Effects of radiation on DNA". Thesis, University of Salford, 1985. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.356177.
Texto completoVerma, Meera Mary. "On the effect of UV-irradiation on DNA replication in Escherichia coli". Title page, contents and summary only, 1985. http://web4.library.adelaide.edu.au/theses/09PH/09phv522.pdf.
Texto completoByrne, Shaun Edward. "An investigation into the processing of ionising radiation induced clustered DNA damage sites using mammalian cell extracts". Thesis, University of Oxford, 2007. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.670082.
Texto completoRoos, Wynand Paul. "The influence of DNA damage, DNA repair and chromatin structure on radiosensitivity". Thesis, Stellenbosch : Stellenbosch University, 2001. http://hdl.handle.net/10019.1/52540.
Texto completoENGLISH ABSTRACT: The factors which control radiosensitivity are of vital importance for the understanding of cell inactivation and for cancer therapy. Cell cycle blocks, total induced DNA damage, DNA repair, apoptosis and chromatin structure are likely to playa role in the responses leading to cell death. I have examined aspects of irradiation-induced G2/M blocks in DNA damage and repair. In HT29, L132 and ATs4 cells the total amount of induced DNA damage by isodoses of 4.5 Gy, 5 Gy and 2 Gy was found to be 14 %, 14 % and 12 % respectively. Most of the DNA repair was completed before the G2/M maximum and only 3 % of DNA damage remains to be restored in the G2/M block. The radiosensitivity in eleven cell lines was found to range from SF2 of 0.02 to 0.61. By FADU assay the undamaged DNA at 5 Gy was found to range from 56% to 93%. The initial DNA damage and radiosensitivity were highly correlated (r2=0. 81). After 5 Gy irradiation and 12 hours repair two groups of cell lines emerged. The group 1 cell lines restored undamaged DNA to a level ranging from 94 % to 98 %. The group 2 cell lines restored the undamaged DNA to a level ranging from 77 % to 82 %. No correlation was seen between residual DNA damage remaining after 12 hours repair and radiosensitivity. In CHO-K1 cells chromatin condensation induced by Nocodazole was found to marginally increase the radiosensitivity as shown by the change of the mean inactivation dose (D) from 4.446 to 4.376 Gy. Nocodazole also increased the initial DNA damage, induced by 5 Gy, from 7 % to 13 %. In xrs1 cells these conditions increased the radiosensitivity from D of 1.209 to 0.7836 Gy and the initial DNA damage from 43 % to 57 %. Disruption of chromatin structure with a hypertonic medium was found to increase radiosensitivity in CHO-K1 cells from D of 4.446 to 3.092 Gy and the initial DNA damage from 7 % to 15 %. In xrs1 cells these conditions caused radiosensitivity to decrease from D of 1.209 to 1.609 Gy and the initial DNA damage from 43 % to 36 %. Repair inhibition by Wortmannin increased the radiosensitivity in CHO-K1 from a D of 5.914 Gy in DMSO controls to a D 3.043 Gy. In xrs1 cells repair inhibition had no effect on radiosensitivity. Significant inhibition of repair was seen in CHO-K1 at 2 hours (p<0.0001) and at 20 hours (p=0.0095). No inhibition of repair was seen in xrs1 cells at 2 hours (p=0.6082) or 20 hours (p=0.6069). While DNA repair must be allocated to the post-irradiation period, the G2/M block seen in p53 mutants reaches a maximum only 12 hours post-irradiation when most of the repair is completed. As the G2/M block resolves and cells reenter cycle 28 hours after the G2 maximum it appears that repair processes cannot be the only reason for the G2IM cell cycle arrest. At low doses of irradiation initial DNA damage correlates with radiosensitivity. This suggests that the initial DNA damage is a determinant for radiosensitivity. Repair of DNA double-strand breaks by the non-homologous end joining (NHEJ) mechanism, identified by inhibition with Wortmannin, was shown to influence residual DNA damage and cell survival. Both the initial DNA damage and DNA repair were found to be influenced by chromatin structure. Chromatin structure was modulated by high salt and by Nocodazole, and has heen identified as a parameter which influences radiosensitivity.
AFRIKAANSE OPSOMMING: Die faktore wat betrokke is in die meganisme van stralings-sensitisering is van hoogs belang vir die begrip van sel inaktiveering en kanker terapie. Sel siklus blokke, totale geïnduseerde DNS skade, DNS herstel, apoptose en chromatien struktuur is moontlike rol vertolkers in die sellulêre response wat ly tot seldood. Ek het die aspekte van stralings-geïnduseerde G2/M blokke in DNS skade en DNS herstelondersoek. Die hoeveelheid geïnduseerde DNS skade, deur ooreenstemmende stralings-dosisse, in HT29, L132 en ATs4 selle is 14 %, 14 % en 12 %. Meeste van die DNS herstel is klaar voordat die G2/M maksimum beryk word en net 3 % DNS skade blyoor om herstel te word in die G2/M blok. Die stralings-sensitiwiteit in elf sel lyne varieer tussen 'n SF2 van 0.02 en 0.61. Deur die gebruik van die FADU metode is gevind dat die onbeskadigde DNS na 5 Gy bestraling varieer tussen 56 % en 93 %. Die totale geïnduseerde DNS skade en stralings-sensitiwiteit was hoogs gekorreleer (r2=0.81). Na 5 Gy bestraling en 12 ure herstel kan die sel lyne in twee groepe gegroepeer word. Die groep 1 sellyne herstel die onbeskadigde DNS terug na 'n vlak wat varieer tussen 94 % en 98 %. Die groep 2 sel lyne herstel die onbeskadigde DNS terug tot op 'n vlak wat varieer tussen 77 % en 82 %. Geen korrelasie is gesien tussen oorblywende DNS skade en stralings-sensitiwiteit na 12 ure herstel nie. In die CHO-K1 sel lyn, chromatien kompaksie geïnduseer deur Nocodazole, vererger die stralings- sensitiwiteit soos gesien deur die gemiddelde inaktiveerings dosis (D) wat verlaag het van 4.446 tot 4.376. Nocodazole het ook die totale DNS skade verhoog van 7 % tot 13 %. Onder dieselfde kondisies, in die xrs1 sel lyn, is 'n verergering van stralings-sensitiwiteit (D) gesien van 1.209 tot 0.7836 en verhoog ONS skade van 43 % tot 57 %. Die ontwrigting van die chromatien struktuur deur die gebruik van hipertoniese medium het die stralings-sensitiwiteit (D) vererger in CHO-K1 selle van 4.446 tot 3.092. Die totale ONS skade is verhoog van 7 % tot 15 %. Onder dieselfde kondisies, in die xrs1 sellyn, verbeter die stralings-sensitiwiteit (D) van 1.209 tot 1.609 en die totale ONS skade verminder van 43 % tot 36 %. ONS herstel inaktiveering in die teenwoordigheid van Wortmannin het die stralings-sensitiwiteit (D) in CHO-K1 selle vererger van 5.914 in DMSO verwysings kondisies tot 3.043. Die ONS herstel inaktiveering in xrs1 selle het geen uitwerking gehaat op stralingssensitiwiteit nie. Noemenswaardige inaktiveering van ONS herstel is gesien in CHO-K1 selle na 2 ure (p<0.0001) en na 20 ure (p=0.0095). Geen inaktiveering is gesien in xrs1 selle na 2 ure (p=0.6082) of na 20 ure (p=0.6069) nie. TerwylONS herstel moet plaasvind na die bestralings periode, beryk die G2/M blok in p53 gemuteerde selle sy maksimum 12 ure na bestraling terwyl meeste van die ONS herstel alreeds voltooi is. Aangesien die G2/M blok eers 28 ure later begin sirkuleer moet die G2/M blok nog 'n funksie vervul anders as ONS herstel. By lae dosisse van bestraling korreleer die totale geïnduseerde ONS skade met stralings-sensitiwiteit. Dit dui daarop dat die totale ONS skade 'n bepalende faktor moet wees in stralings-sensitiwiteit. Die herstel van ONS skade deur die nie-homoloë eindpunt samevoeging (NHES) meganisme, geïdentifiseer deur inaktiveering deur Wortmann in, het 'n invloed op oorblywende ONS skade en sellulêre oorlewing. Beide die totale ONS skade en ONS herstel was beïnvloed deur die chromatien struktuur. Chromatien struktuur was gemoduleer deur hoë sout konsentrasies en deur Nocodazole, en is geïdentifiseer as a belangrike parameter wat stralings-sensitiwiteit beïnvloed.
Starrs, Sharon Margaret. "Molecular mechanisms of DNA photodamage". Thesis, Queen's University Belfast, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.314222.
Texto completoSweeney, Marion Carol. "The effects of gamma radiation on DNA". Thesis, University of Leicester, 1986. http://hdl.handle.net/2381/33943.
Texto completoElsy, David. "The effects of gamma-radiation on DNA". Thesis, University of Leicester, 1991. http://hdl.handle.net/2381/33664.
Texto completoLibros sobre el tema "DNA Effect of radiation on"
NATO Advanced Research Workshop on the Early Effects of Radiation on DNA (1990 San Miniato, Italy). The early effects of radiation on DNA. Berlin: Springer-Verlag, 1991.
Buscar texto completoNATO Advanced Study Institute on Radiation Carcinogenesis and DNA Alterations (1984 Kerkyra, Greece). Radiation carcinogenesis and DNA alterations. New York: Plenum Press, 1986.
Buscar texto completoBraddock, Martin. Effects of radiation on DNA. Salford: University of Salford, 1985.
Buscar texto completoPrzybytniak, Grażyna. Rodniki powstające w DNA i jego nukleotydach pod wpływem promieniowania jonizującego. Warszawa: Instytut Chemii i Techniki Jądrowej, 2004.
Buscar texto completoVilenchik, M. M. Nestabilʹnostʹ DNK i otdalennye vozdeĭstvii͡a︡ izlucheniĭ. Moskva: Ėnergoatomizdat, 1987.
Buscar texto completoMarikki, Laiho y SpringerLink (Online service), eds. Molecular Determinants of Radiation Response. New York, NY: Springer Science+Business Media, LLC, 2011.
Buscar texto completoFielden, E. M. y P. O’Neill, eds. The Early Effects of Radiation on DNA. Berlin, Heidelberg: Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/978-3-642-75148-6.
Texto completoSharpatyĭ, V. A. Radiat︠s︡ionnai︠a︡ khimii︠a︡ biopolimerov. Moskva: GEOS, 2008.
Buscar texto completoUCLA SymposiaColloquium, Ionizing Radiation Damage to DNA, Molecular Aspects (1990 Lake Tahoe, Calif.). Ionizing radiation damage to DNA: Molecular aspects : proceedings of a Radiation Research Society-UCLA Symposia Colloquium held at Lake Tahoe, California, January 16-21, 1990. Editado por Wallace Susan S, Painter Robert B, Radiation Research Society (U.S.) y University of California, Los Angeles. New York, N.Y: Wiley-Liss, 1990.
Buscar texto completoKruszewski, Marcin. Podłoże odwrotnej krzyżowej oporności komórek L5178Y na promieniowanie jonizujące i nadtlenek wodoru. Warszawa: Instytut Chemii i Techniki Jądrowej, 1999., 1999.
Buscar texto completoCapítulos de libros sobre el tema "DNA Effect of radiation on"
Kiefer, Jürgen. "Photo- and Radiation Chemistry of DNA". En Biological Radiation Effects, 104–20. Berlin, Heidelberg: Springer Berlin Heidelberg, 1990. http://dx.doi.org/10.1007/978-3-642-83769-2_6.
Texto completoSagstuen, E., E. O. Hole, W. H. Nelson y D. M. Close. "The Effect of Environment upon DNA Free Radicals". En The Early Effects of Radiation on DNA, 215–30. Berlin, Heidelberg: Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/978-3-642-75148-6_23.
Texto completoSwenberg, Charles E. "DNA and Radioprotection". En Terrestrial Space Radiation and Its Biological Effects, 675–95. Boston, MA: Springer US, 1988. http://dx.doi.org/10.1007/978-1-4613-1567-4_47.
Texto completoBarendsen, G. W. "The Dependence of Dose-Effect Relations for Various Responses in Mammalian Cells on Radiation Quality, Implications for Mechanisms of Carcinogenesis". En Radiation Carcinogenesis and DNA Alterations, 583–91. Boston, MA: Springer US, 1986. http://dx.doi.org/10.1007/978-1-4684-5269-3_49.
Texto completoEdwards, A. A. y D. C. Lloyd. "Chromosomal Damage in Human Lymphocytes: Effect of Radiation Quality". En The Early Effects of Radiation on DNA, 385–96. Berlin, Heidelberg: Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/978-3-642-75148-6_40.
Texto completovan der Schans, G. P. "Effect of Dose Modifiers on Radiation-Induced Cellular DNA Damage". En The Early Effects of Radiation on DNA, 347–62. Berlin, Heidelberg: Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/978-3-642-75148-6_36.
Texto completoFrankenberg, D. "Repair of DNA Damage and its Effect on RBE - An Experimental Approach". En The Early Effects of Radiation on DNA, 287–305. Berlin, Heidelberg: Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/978-3-642-75148-6_30.
Texto completoMcClellan, R. O., B. B. Boecker, F. F. Hahn, B. A. Muggenburg y R. G. Cuddihy. "Carcinogenic Effects of Inhaled Radionuclides". En Radiation Carcinogenesis and DNA Alterations, 147–54. Boston, MA: Springer US, 1986. http://dx.doi.org/10.1007/978-1-4684-5269-3_8.
Texto completoField, S. B. "Non-Stochastic Effects: Compatibility with Present ICRP Recommendations". En Radiation Carcinogenesis and DNA Alterations, 539–57. Boston, MA: Springer US, 1986. http://dx.doi.org/10.1007/978-1-4684-5269-3_45.
Texto completoOlive, P. L. "Discussion: Cellular DNA Strand Breakage". En The Early Effects of Radiation on DNA, 107–10. Berlin, Heidelberg: Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/978-3-642-75148-6_11.
Texto completoActas de conferencias sobre el tema "DNA Effect of radiation on"
Ram, Vineetha, VISHNU KAVUNGAL, Pradeep Chandran y Nampoori Vadakkedathu Parameswaran Narayana. "Silver Nanoparticles as Radiation Absorbers to Reduce the Effect of Mobile Phone Radiation on DNA". En International Conference on Fibre Optics and Photonics. Washington, D.C.: OSA, 2012. http://dx.doi.org/10.1364/photonics.2012.w3b.3.
Texto completoPrahardi, R. y Arundito Widikusumo. "Zero Dose". En Seminar Si-INTAN. Badan Pengawas Tenaga Nuklir, 2021. http://dx.doi.org/10.53862/ssi.v1.062021.008.
Texto completoPrahardi, R. y Arundito Widikusumo. "Pentingnya Pendidikan dan Pelatihan Bagi Pekerja Radiasi". En Seminar Si-INTAN. Badan Pengawas Tenaga Nuklir, 2021. http://dx.doi.org/10.53862/ssi.v1.062021.005.
Texto completoDicu, Tiberius, Ion D. Postescu, Vasile Foriş, Ioana Brie, Eva Fischer-Fodor, Valentin Cernea, Mircea Moldovan, Constantin Cosma, Madalin Bunoiu y Iosif Malaescu. "The Effect of a Grape Seed Extract on Radiation-Induced DNA Damage in Human Lymphocytes". En PROCEEDINGS OF THE PHYSICS CONFERENCE: TIM—08. AIP, 2009. http://dx.doi.org/10.1063/1.3153444.
Texto completoCao, En-Hua, Ju-jun Wang y Shu-min Xin. "Nonlinear biological effects of high-intensity visible laser radiation on DNA". En OE/LASE'93: Optics, Electro-Optics, & Laser Applications in Science& Engineering, editado por Steven L. Jacques y Abraham Katzir. SPIE, 1993. http://dx.doi.org/10.1117/12.147670.
Texto completoBera, Partha P., Henry F. Schaefer, George Maroulis y Theodore E. Simos. "Elementary Energetic Effects of Radiation Damage to DNA and RNA Subunits". En Computational Methods in Science and Engineering. AIP, 2007. http://dx.doi.org/10.1063/1.2826997.
Texto completoJanic, Branislava, Fangchao Liu, Kevin Bobbitt, Stephen Brown, Guangzhao Mao, Indrin J. Chetty, Benjamin Movsas y Ning Winston Wen. "Abstract 1376: Effect of gold nanoparticle on radiation induced DNA damage in MCF7 breast cancer cells". En Proceedings: AACR Annual Meeting 2018; April 14-18, 2018; Chicago, IL. American Association for Cancer Research, 2018. http://dx.doi.org/10.1158/1538-7445.am2018-1376.
Texto completoDan, Tu, Ajay Palagani, Tiziana DeAngelis, Sunny Han, Lance Liotta, Richard Pestell y Nicole Simone. "Abstract 3064: MicroRNA-21 enhances the effect of ionizing radiation via alteration of the DNA damage response". En Proceedings: AACR 106th Annual Meeting 2015; April 18-22, 2015; Philadelphia, PA. American Association for Cancer Research, 2015. http://dx.doi.org/10.1158/1538-7445.am2015-3064.
Texto completoVasilyeva, Irina, O. Korytov, V. Bespalov, A. Semenov, G. Tochil'nikov, S. Ivanov y L. Korytova. "EFFECTS OF RADIATION EXPOSURE OF THE BLADDER ON EARLY CHANGES OF EXTRACELLULAR DNA AND OTHER INDICATORS OF PERIPHERAL BLOOD". En XIV International Scientific Conference "System Analysis in Medicine". Far Eastern Scientific Center of Physiology and Pathology of Respiration, 2020. http://dx.doi.org/10.12737/conferencearticle_5fe01d9b37c7f8.86673968.
Texto completoVishnu, K., B. Nithyaja, M. Kailasnath y V. P. N. Nampoori. "Studies on Thermal Effects of Mobile Phone Radiation on DNA by Thermal Lens Technique". En International Conference on Fibre Optics and Photonics. Washington, D.C.: OSA, 2012. http://dx.doi.org/10.1364/photonics.2012.mpo.5.
Texto completoInformes sobre el tema "DNA Effect of radiation on"
Hosselet, S. The effect of radiation penetration on DNA single-strand breaks in rat skin explants. Office of Scientific and Technical Information (OSTI), enero de 1989. http://dx.doi.org/10.2172/5561134.
Texto completoPeak, J. G., T. Ito, M. J. Peak y F. T. Robb. DNA damage produced by exposure of supercoiled plasmid DNA to high- and low-LET ionizing radiation: Effects of hydroxyl radical quenchers. DNA breakage, neutrons, OH radicals. Office of Scientific and Technical Information (OSTI), agosto de 1994. http://dx.doi.org/10.2172/10172487.
Texto completoSevilla, M. D. Mechanisms for radiation damage in DNA. Office of Scientific and Technical Information (OSTI), diciembre de 1992. http://dx.doi.org/10.2172/7176057.
Texto completoSevilla, M. D. Mechanisms for radiation damage in DNA. Office of Scientific and Technical Information (OSTI), enero de 1990. http://dx.doi.org/10.2172/5018151.
Texto completoSevilla, M. D. Mechanisms for radiation damadge in DNA. Office of Scientific and Technical Information (OSTI), noviembre de 1994. http://dx.doi.org/10.2172/87116.
Texto completoWilson, David. Repair Machinery for Radiation-Induced DNA Damage. Fort Belvoir, VA: Defense Technical Information Center, julio de 2001. http://dx.doi.org/10.21236/ada396847.
Texto completoWilson, David. Repair Machinery for Radiation-Induced DNA Damage. Fort Belvoir, VA: Defense Technical Information Center, julio de 2000. http://dx.doi.org/10.21236/ada384080.
Texto completoThompson, Lawrence H. Repair Machinery for Radiation-Induced DNA Damage. Fort Belvoir, VA: Defense Technical Information Center, noviembre de 2003. http://dx.doi.org/10.21236/ada423482.
Texto completoOsman, R. Molecular mechanisms in radiation damage to DNA. Office of Scientific and Technical Information (OSTI), octubre de 1991. http://dx.doi.org/10.2172/5816640.
Texto completoThompson, Lawrence H. Repair Machinery for Radiation-Induced DNA Damage. Fort Belvoir, VA: Defense Technical Information Center, julio de 2002. http://dx.doi.org/10.21236/ada407373.
Texto completo