Tesis sobre el tema "Distribution des clés quantiques"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte los 44 mejores tesis para su investigación sobre el tema "Distribution des clés quantiques".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Explore tesis sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.
Leverrier, Anthony. "Etude théorique de la distribution quantique de clés à variables continues". Phd thesis, Télécom ParisTech, 2009. http://tel.archives-ouvertes.fr/tel-00451021.
Texto completoLeverrier, Anthony. "Etude théorique de la distribution quantique de clés à variables continues". Phd thesis, Paris, Télécom ParisTech, 2009. https://theses.hal.science/tel-00451021.
Texto completoThis thesis is concerned with quantum key distribution (QKD), a cryptographic primitive allowing two distant parties, Alice and Bob, to establish a secret key, in spite of the presence of a potential eavesdropper, Eve. Here, we focus on continuous-variable protocols, for which the information is coded in phase-space. The main advantage of these protocols is that their implementation only requires standard telecom components. The security of QKD lies on the laws of quantum physics: an eavesdropper will necessary induce some noise on the communication, therefore revealing her presence. A particularly difficult step of continuous-variable QKD protocols is the ``reconciliation'' where Alice and Bob use their classical measurement results to agree on a common bit string. We first develop an optimal reconciliation algorithm for the initial protocol, then introduce a new protocol for which the reconciliation problem is automatically taken care of thanks to a discrete modulation. Proving the security of continuous-variable QKD protocols is a challenging problem because these protocols are formally described in an infinite dimensional Hilbert space. A solution is to use all available symmetries of the protocols. In particular, we introduce and study a class of symmetries in phase space, which is particularly relevant for continuous-variable QKD. Finally, we consider finite size effects for these protocols. We especially analyse the influence of parameter estimation on the performance of continuous-variable QDK protocols
Bocquet, Aurélien. "Modèles de sécurité réalistes pour la distribution quantique de clés". Phd thesis, Télécom ParisTech, 2011. http://pastel.archives-ouvertes.fr/pastel-00784705.
Texto completoBocquet, Aurélien. "Modèles de sécurité réalistes pour la distribution quantique de clés". Phd thesis, Paris, Télécom ParisTech, 2011. https://pastel.hal.science/pastel-00784705.
Texto completoSince its invention in 1984 by C. H. Bennett and G. Brassard, the BB84 protocol has been proven secure against the most general attacks allowed by quantum mechanics, the coherent attacks. In order to conduct such an attack, an eavesdropper needs a quantum memory. It is however technologically very hard to create a quantum memory with adequate properties at the moment. It is therefore useful to study the evolution of the power of the eavesdropper when he doesn’t have access to a perfect quantum memory but instead to a noisy quantum memory. New security models where the power of the eavesdropper is limited by the quality of its quantum memory have already been developed specifically for the study of two-party protocols like bit commitment or oblivious transfer. We therefore used these models and adapted them to the particular case of quantum key distribution. With these newly developed tools, we have studied the security of quantum key distribution protocols when the adversary doesn’t have a quantum memory and when he has access to a limited amount of noisy memory. This research improves our knowledge on the interaction between the quality of the quantum memory and the power of the attacks. It leads to a better understanding of the tradeoff between performance (measured in term of key rate or maximum distance) and security
Jouguet, Paul. "Performance et sécurité de dispositifs de distribution quantique de clés à variables continues". Thesis, Paris, ENST, 2013. http://www.theses.fr/2013ENST0048/document.
Texto completoThis thesis focuses on a cryptographic primitive that allows two distant parties to generate an arbitrary amount of secret key even in the presence of an eavesdropper, provided that they share a short initial secret message. We focus our study on continuous-variable protocols and demonstrate experimentally an all-fiber system that performs distribution of secret keys at 80 km on a dedicated fiber link while taking into account all known imperfections. We could extract secret keys at such a distance bydesigning specific error correcting codes that perform very close to Shannon’s bound for low signal to noise ratios. We also consider side-channel attacks that are not taken into account into the system security proof and propose some countermeasures. Finally, we study our system compability with intense communication channels that propagate on the same optical fiber
Jouguet, Paul. "Performance et sécurité de dispositifs de distribution quantique de clés à variables continues". Electronic Thesis or Diss., Paris, ENST, 2013. http://www.theses.fr/2013ENST0048.
Texto completoThis thesis focuses on a cryptographic primitive that allows two distant parties to generate an arbitrary amount of secret key even in the presence of an eavesdropper, provided that they share a short initial secret message. We focus our study on continuous-variable protocols and demonstrate experimentally an all-fiber system that performs distribution of secret keys at 80 km on a dedicated fiber link while taking into account all known imperfections. We could extract secret keys at such a distance bydesigning specific error correcting codes that perform very close to Shannon’s bound for low signal to noise ratios. We also consider side-channel attacks that are not taken into account into the system security proof and propose some countermeasures. Finally, we study our system compability with intense communication channels that propagate on the same optical fiber
Bloch, M. "Algorithme de réconciliation et méthodes de distribution quantique de clés adaptées au domaine fréquentiel". Phd thesis, Université de Franche-Comté, 2006. http://tel.archives-ouvertes.fr/tel-00373723.
Texto completoBloch, Matthieu. "Algorithme de réconciliation et méthodes de distribution quantique de clés adaptées au domaine fréquentiel". Phd thesis, Université de Franche-Comté, 2006. http://tel.archives-ouvertes.fr/tel-00203634.
Texto completoNous avons proposé un système de distribution quantique de clés par photons uniques exploitant un véritable codage en fréquence de l'information. Cette nouvelle méthode de codage permet de s'affranchir de dispositifs interférométriques et offre donc une grande robustesse. Un démonstrateur basé sur des composants optiques intégrés standard a été réalisé et a permis de valider expérimentalement le principe de codage. Nous avons ensuite étudié un système mettant en oeuvre un protocole de cryptographie quantique par « variables continues », codant l'information sur l'amplitude et la phase d'états cohérents. Le dispositif proposé est basé sur un multiplexage fréquentiel du signal porteur d'information et d'un oscillateur local.
Les débits atteints par les systèmes de distribution de clés ne sont pas uniquement limités par des contraintes technologiques, mais aussi par l'efficacité des protocoles de réconciliation utilisés. Nous avons proposé un algorithme de réconciliation de variables continues efficace, basé sur des codes LDPC et permettant d'envisager de réelles distributions de clés à haut débit avec les protocoles à variables continues.
Roumestan, François. "Techniques avancées de traitement du signal pour les systèmes de distribution quantique de clés sur fibre optique basés sur des variables continues". Electronic Thesis or Diss., Sorbonne université, 2022. https://theses.hal.science/tel-03880444.
Texto completoQuantum key distribution offers the possibility of cryptography whose security is demonstrated by the laws of quantum physics. The first commercial systems of this technology are now available. This thesis focuses on continuous variable protocols, whose practical implementation is close to modern digital transmission techniques over optical fibers. By exploiting these techniques, we realize an experimental system for high speed continuous variable quantum key distribution
Van, Assche Gilles. "Information-Theoretic aspects of quantum key distribution". Doctoral thesis, Universite Libre de Bruxelles, 2005. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/211050.
Texto completoLa distribution quantique de clés est une technique cryptographique permettant l'échange de clés secrètes dont la confidentialité est garantie par les lois de la mécanique quantique. Le comportement particulier des particules élémentaires est exploité. En effet, en mécanique quantique, toute mesure sur l'état d'une particule modifie irrémédiablement cet état. En jouant sur cette propriété, deux parties, souvent appelées Alice et Bob, peuvent encoder une clé secrète dans des porteurs quantiques tels que des photons uniques. Toute tentative d'espionnage demande à l'espion, Eve, une mesure de l'état du photon qui transmet un bit de clé et donc se traduit par une perturbation de l'état. Alice et Bob peuvent alors se rendre compte de la présence d'Eve par un nombre inhabituel d'erreurs de transmission.
L'information échangée par la distribution quantique n'est pas directement utilisable mais doit être d'abord traitée. Les erreurs de transmissions, qu'elles soient dues à un espion ou simplement à du bruit dans le canal de communication, doivent être corrigées grâce à une technique appelée réconciliation. Ensuite, la connaissance partielle d'un espion qui n'aurait perturbé qu'une partie des porteurs doit être supprimée de la clé finale grâce à une technique dite d'amplification de confidentialité.
Cette thèse s'inscrit dans le contexte de la distribution quantique de clé où les porteurs sont des états continus de la lumière. En particulier, une partie importante de ce travail est consacrée au traitement de l'information continue échangée par un protocole particulier de distribution quantique de clés, où les porteurs sont des états cohérents de la lumière. La nature continue de cette information implique des aménagements particuliers des techniques de réconciliation, qui ont surtout été développées pour traiter l'information binaire. Nous proposons une technique dite de réconciliation en tranches qui permet de traiter efficacement l'information continue. L'ensemble des techniques développées a été utilisé en collaboration avec l'Institut d'Optique à Orsay, France, pour produire la première expérience de distribution quantique de clés au moyen d'états cohérents de la lumière modulés continuement.
D'autres aspects importants sont également traités dans cette thèse, tels que la mise en perspective de la distribution quantique de clés dans un contexte cryptographique, la spécification d'un protocole complet, la création de nouvelles techniques d'amplification de confidentialité plus rapides à mettre en œuvre ou l'étude théorique et pratique d'algorithmes alternatifs de réconciliation.
Enfin, nous étudions la sécurité du protocole à états cohérents en établissant son équivalence à un protocole de purification d'intrication. Sans entrer dans les détails, cette équivalence, formelle, permet de valider la robustesse du protocole contre tout type d'espionnage, même le plus compliqué possible, permis par les lois de la mécanique quantique. En particulier, nous généralisons l'algorithme de réconciliation en tranches pour le transformer en un protocole de purification et nous établissons ainsi un protocole de distribution quantique sûr contre toute stratégie d'espionnage.
Quantum key distribution is a cryptographic technique, which allows to exchange secret keys whose confidentiality is guaranteed by the laws of quantum mechanics. The strange behavior of elementary particles is exploited. In quantum mechnics, any measurement of the state of a particle irreversibly modifies this state. By taking advantage of this property, two parties, often called Alice and bob, can encode a secret key into quatum information carriers such as single photons. Any attempt at eavesdropping requires the spy, Eve, to measure the state of the photon and thus to perturb this state. Alice and Bob can then be aware of Eve's presence by a unusually high number of transmission errors.
The information exchanged by quantum key distribution is not directly usable but must first be processed. Transmission errors, whether they are caused by an eavesdropper or simply by noise in the transmission channel, must be corrected with a technique called reconciliation. Then, the partial knowledge of an eavesdropper, who would perturb only a fraction of the carriers, must be wiped out from the final key thanks to a technique called privacy amplification.
The context of this thesis is the quantum key distribution with continuous states of light as carriers. An important part of this work deals with the processing of continuous information exchanged by a particular protocol, where the carriers are coherent states of light. The continuous nature of information in this case implies peculiar changes to the reconciliation techniques, which have mostly been developed to process binary information. We propose a technique called sliced error correction, which allows to efficiently process continuous information. The set of the developed techniques was used in collaboration with the Institut d'Optique, Orsay, France, to set up the first experiment of quantum key distribution with continuously-modulated coherent states of light.
Other important aspects are also treated in this thesis, such as placing quantum key distribution in the context of a cryptosystem, the specification of a complete protocol, the creation of new techniques for faster privacy amplification or the theoretical and practical study of alternate reconciliation algorithms.
Finally, we study the security of the coherent state protocol by analyzing its equivalence with an entanglement purification protocol. Without going into the details, this formal equivalence allows to validate the robustness of the protocol against any kind of eavesdropping, even the most intricate one allowed by the laws of quantum mechanics. In particular, we generalize the sliced error correction algorithm so as to transform it into a purification protocol and we thus establish a quantum key distribution protocol secure against any eavesdropping strategy.
Doctorat en sciences appliquées
info:eu-repo/semantics/nonPublished
Ghorai, Shouvik. "Continuous-variable quantum cryptographic protocols". Electronic Thesis or Diss., Sorbonne université, 2021. https://accesdistant.sorbonne-universite.fr/login?url=https://theses-intra.sorbonne-universite.fr/2021SORUS007.pdf.
Texto completoThis thesis is concerned with the study and analysis of two quantum cryptographic protocols: quantum key distribution (QKD) and unforgeable quantum money in the continuous-variable (CV) framework. The main advantage of CV protocols is that their implementation only requires standard telecom components. QKD allows two distant parties, Alice and Bob, to establish a secure key, even in the presence of an eavesdropper, Eve. The remarkable property of QKD is that its security can be established in the information-theoretic setting, without appealing to any computational assumptions. Proving the security of CV-QKD protocols is challenging since the protocols are described in an infinite-dimensional Fock space. One of the open questions in CV-QKD was establishing security for two-way QKD protocols against general attacks. We exploit the invariance of Unitary group U(n) of the protocol to establish composable security against general attacks. We answer another pressing question in the field of CV-QKD with a discrete modulation by establishing the asymptotic security of such protocols against collective attacks. We provide a general technique to derive a lower bound on the secret key rate by formulating the problem as a semidefinite program. Quantum money exploits the no-cloning property of quantum mechanics to generate unforgeable tokens, banknotes, and credit cards. We propose a CV private-key quantum money scheme with classical verification. The motivation behind this protocol is to facilitate the process of practical implementation. Previous classical verification money schemes use single-photon detectors for verification, while our protocols use coherent detection
Boucher, William. "Distribution quantique de clé par codage temporel". Paris 6, 2004. http://www.theses.fr/2004PA066014.
Texto completoFossier, Simon. "Mise en œuvre et évaluation de dispositifs de cryptographie quantique à longueur d'onde télécom". Phd thesis, Université Paris Sud - Paris XI, 2009. http://tel.archives-ouvertes.fr/tel-00429450.
Texto completoQin, Hao. "Sécurité pratique de systèmes de cryptographie quantique : étude d'attaques et développement de contre-mesures". Electronic Thesis or Diss., Paris, ENST, 2015. http://www.theses.fr/2015ENST0040.
Texto completoIn this thesis, I study a cryptographic primitive called quantum key distribution which allows two remote parties to share a secret key, in the presence of an eavesdropper, whose power is only limited by the laws of quantum physics. I focus my study on the implementation and the practical security of continuousvariable protocols. For the first time, I have proposed and studied a detector-based side channel attack on a continuous-variable system : saturation attack. This attack opens a new security loophole that we have characterized experimentally in our laboratory, on a real continuous-variable system. Finally, we have demonstrated experimentally for the first time the feasibility of a continuous-variable system deployment in a Dense Wavelength Division Multiplexing network, where quantum signals coexist with intense classical signals in a same fiber
Amblard, Zoé. "Cryptographie quantique et applications spatiales". Thesis, Limoges, 2016. http://www.theses.fr/2016LIMO0113.
Texto completoThis thesis in collaboration with Thales Alenia Space studies quantum cryptographic protocols for n parties in dimension d. We first analyze the family of Bell inequalities called homogeneous Bell inequalities introduces by François Arnault in [1] and we construct several theoretical tools for a better understanding of these inequalities. With these tools, we show how to implement the measurements required to test these inequalities by using optical devices calleds multiport beamsplitters and described by Zukowski et al. in [2]. We use these devices to construct new cryptographic protocols in dimension d called hdDEB which we describe in [3]. Then, we study advantages and drawbacks of the use of quantum cryptography to protect satellite links in a noisy environment. We consider several scenarios with LEO satellites and, for each of them, we conclude about the interest of using Quantum Key Distribution protocols
Lodewyck, Jérôme. "Dispositif de distribution quantique de clé avec desétats cohérents à longueur d'onde télécom". Phd thesis, Université Paris Sud - Paris XI, 2006. http://tel.archives-ouvertes.fr/tel-00130680.
Texto completoL'utilisation de variables continues dans le domaine de l'information quantique, récemment apparue, permet de concevoir des systèmes de distribution quantique de clé qui ne nécessitent que des composants standards de l'industrie des télécommunications. Ces composants ouvrent la voie vers les hauts débits caractéristiques des liaisons en fibres optiques.
Nous avons réalisé un système complet de distribution quantique de clé qui utilise l'amplitude et la phase d'états cohérents pulsés de la lumière modulées selon une distribution gaussienne. Notre système est exclusivement réalisé avec des fibres optiques, et atteint un taux de répétition de 1 MHz. Nous avons caractérisé l'information secrète transmise par ce dispositif. Nous avons validé cette caractérisation en réalisant des attaques quantiques originales qui couvrent l'ensemble des perturbations qui peuvent être envisagées sur la transmission.
Nous avons ensuite adapté des algorithmes de correction d'erreur et d'amplification de secret qui produisent une clé secrète à partir des données expérimentales. Enfin, nous avons conçu un ensemble logiciel autonome qui intègre la gestion de l'expérience aux algorithmes de correction d'erreur.
Ces travaux nous ont permis de distribuer une clé secrète sur une fibre de 25 km avec un taux finalde 1 kb/s. Le système que nous avons réalisé sera intégré dans un réseau de distribution quantique de clé faisant intervenir plusieurs collaborateurs européens.
Lodewyck, Jérôme. "Dispositif de distribution quantique de clé avec des états cohérents à longueur d'onde télécom". Paris 11, 2006. https://pastel.archives-ouvertes.fr/tel-00130680v2.
Texto completoPersechino, Mauro. "Étude experimentale de l'intégration d'un systèm de distribution quantique de clé à variables continues sur un circuit optique en silicium". Thesis, Université Paris-Saclay (ComUE), 2017. http://www.theses.fr/2017SACLO013/document.
Texto completoDuring recent years there have been significant developments in quantum cryptography, bringing quantum key distribution (QKD) devices on the market. This can be done by using either discrete variables (DV) and photon counting, or continuous variables (CV) and coherent detection. Current technological evolutions are now aiming at developing smaller, cheaper and more user-friendly devices.This work focuses on the implementation of CV-QKD using silicon photonics techniques, which provide a high degree of integration. This is exploited to build an on-chip realization of a cryptographic protocol, using Gaussian modulation of coherent states. Two different approaches have been used, first by physically implementing the sender (Alice) and the receiver (Bob) on the same chip for validation purposes, and then by having them onto two separate chips. The measured communication parameters give the possibility to extract a secret key
St-Amand, Martin. "Nouvelle méthode de distribution des clés de cryptage dans les communications multicast". Thèse, Université du Québec à Trois-Rivières, 2003. http://depot-e.uqtr.ca/4725/1/000108705.pdf.
Texto completoKefi, Jihène. "Analyse mathématique et numérique de modèles quantiques pour les semiconducteurs". Toulouse 3, 2003. http://www.theses.fr/2003TOU30186.
Texto completoBoumso, André. "Méthode exploratoire de distribution des clés de cryptage pour les communications de groupe dans un réseau mobile ad hoc". Thèse, Université du Québec à Trois-Rivières, 2006. http://depot-e.uqtr.ca/1809/1/000133229.pdf.
Texto completoBrulhart, Franck. "Les facteurs clés de réussite des partenariats verticaux logistiques : le cas de la relation chargeur agro-alimentaire - prestataire logistique". Aix-Marseille 2, 2002. http://www.theses.fr/2002AIX24004.
Texto completoSilantiev, Alexei. "Groupes quantiques associés aux courbes rationnelles et elliptiques et leurs applications". Phd thesis, Université d'Angers, 2008. http://tel.archives-ouvertes.fr/tel-00453328.
Texto completoCohen, Ruben Y. "Thermalization of a 1-dimensional Rydberg gas and entanglement distribution across quantum networks". Thesis, Université Paris-Saclay (ComUE), 2017. http://www.theses.fr/2017SACLS281/document.
Texto completoThe collective behavior of Rydberg gases is at the heart of many proposals for quantum information. This thesis treats two distinct topics: the collective dynamic of a Rydberg ensemble and the use of quantum repeaters across quantum networks.In the first part of this thesis, we choose to focus on a simple system involving Rydberg atoms: a 1-dimensional Rydberg gas coupled to a laser resonant with the Rydberg transition. Rydberg atoms interact together through the dipole-dipole interaction. This particular feature is used for quantum information purposes, like applying multi-qubits gates for example. This interaction is strong enough so that the dynamic of such system in the regime of few excitations in the gas ensemble is already intractable without any assumptions. One of them is the hardcore Rydberg sphere assumption: we approximate this interaction by a sphere around each excitation inhibiting any second excitation within it. Another one is to suppose that the system thermalizes in such regime; a statistical treatment could then be applied. We have investigated the thermalization of a 1D-Rydberg gas and evaluated the accuracy of the microcanonical ensemble predictions under the first assumption. To do so, we have numerically simulated the dynamic of such system constituted by 100 atoms, in the regime of at most two excitations in the chain, in the initial excitation-less state. Furthermore, we constructed a 6-dimensional analytical model. Comparing the three approaches together, we have concluded that the numerical simulation and the analytical model both agree together but contradicts the microcanonical treatment. In this regime, the microcanonical ensemble is unadapted.In the second part of this thesis, we have studied the distribution of entanglement across a generic quantum network. We have mapped these quantum networks to undirected graphs and studied two different routing scenarios:- the classical routing of quantum entanglement corresponding to the scenario where clients of the network can perform only a single Bell measurement or keep a single qubit. This is the usual model of quantum repeaters. On these networks, peer-to-peer communication problems are equivalent to the vertex disjoint path problem. When the peers are chosen by an adversary, we have found two limitations due to the topological genus and the minimum degree of the graph. We have found two network architectures (almost) saturating the most constraining one, the minimum degree inequality. For the case where the peers are chosen at random, we have studied a specific graph lying in a 2- or 3-dimensional manifold and investigated the trade-off between the quantum links and the number of peers that can communicate simultaneously through the network.- true quantum routing problem (using network coding) corresponding to the situation where the quantum network is composed by small quantum processors that could apply local gates. We focus on a particular communication problem, namely the butterfly network, where classical routing is impossible. Using network coding, this communication is solved
Khali, Samir. "Développement d'une technique de distribution de clés de cryptage pour les applications multicast sur les réseaux sans fil ad hoc". Thèse, Université du Québec à Trois-Rivières, 2008. http://depot-e.uqtr.ca/7304/1/030078397.pdf.
Texto completoDillet, Valérie. "Simulation des effets de solvant dans les calculs quantiques de structure moléculaire". Nancy 1, 1993. http://www.theses.fr/1993NAN10123.
Texto completoHirlinger-Saylor, Nicholas. "A measurement of unpolarized cross sections and polarized cross section differences of deeply virtual compton scattering on the proton at Jefferson Laboratory using Clas". Phd thesis, Université Paris Sud - Paris XI, 2013. http://tel.archives-ouvertes.fr/tel-00913906.
Texto completoBuchheit, Marc. "Application de l'imagerie de photoluminescence à l'étude de la distribution spatiale de propriétés physico-chimiques de semiconducteurs pour la réalisation de dispositifs". Ecully, Ecole centrale de Lyon, 1998. http://www.theses.fr/1998ECDL0042.
Texto completoDumora, Christophe. "Estimation de paramètres clés liés à la gestion d'un réseau de distribution d'eau potable : Méthode d'inférence sur les noeuds d'un graphe". Thesis, Bordeaux, 2020. http://www.theses.fr/2020BORD0325.
Texto completoThe rise of data generated by sensors and operational tools around water distribution network (WDN) management make these systems more and more complex and in general the events more difficult to predict. The history of data related to the quality of distributed water crossed with the knowledge of network assets, contextual data and temporal parameters lead to study a complex system due to its volume and the existence of interactions between these various type of data which may vary in time and space. This big variety of data is grouped by the use of mathematical graph and allow to represent WDN as a whole and all the events that may arise therein or influence their proper functioning. The graph theory associated with these mathematical graphs allow a structural and spectral analysis of WDN to answer to specific needs and enhance existing process. These graphs are then used to answer the probleme of inference on the nodes of large graph from the observation of data on a small number of nodes. An approach by optminisation algorithm is used to construct a variable of flow on every nodes of a graph (therefore at any point of a physical network) using flow algorithm and data measured in real time by flowmeters. Then, a kernel prediction approach based on a Ridge estimator, which raises spectral analysis problems of a large sparse matrix, allow the inference of a signal measured on specific nodes of a graph at any point of a WDN
Cao, Lanlan. "Les compétences-clés dans les stratégies et la performance des filiales d'enseigne internationales : le cas des distributeurs internationaux en Chine". Phd thesis, Université Paris-Est, 2008. http://tel.archives-ouvertes.fr/tel-00717739.
Texto completoBaraquin, Isabelle. "Analyse et probabilité sur les groupes quantiques (localement) compacts et les groupes duaux". Thesis, Bourgogne Franche-Comté, 2019. http://www.theses.fr/2019UBFCD009.
Texto completoIn the first part, we introduce the tools of noncommutative mathematics that we will use in our study of finite quantum groups and dual groups. In particular, we present these "groups" and some of their properties.The second part is dedicated to the study of some finite quantum groups: the Kac-Paljutkin one and the family of Sekine. For each of these examples, we study (asymptotic) properties of the *-distribution of irreducible characters and convergence of random walks arising from linear combinations of irreducible characters. We first examine the representation theory to determine irreducible representations and their powers. Then we study the *-distribution of their trace with respect to the Haar state, by looking at the mixed *-moments. For the Sekine family we determine the asymptotic distribution (as the dimension of the algebra goes to infinity), by considering convergence of moments. For study of random walks, we bound the distance to the Haar state and determine the asymptotic behavior, i.e. the limit state if it exists. We note that the possible limits are any central idempotent state. We also look at cut-off phenomenon in the Sekine finite quantum groups.In the third part, we study dual groups in the sense of Voiculescu. In particular, we are interested in asymptotic properties of the *-distribution of traces of some matrices, with respect to the free Haar trace on the unitary dual group. The considered matrices are powers of the unitary matrix generating the Brown algebra. We proceed in two steps, first computing the mixed *-moments, then characterizing the distribution thanks to the free cumulants. We obtain that these traces are asymptotically *-free circular variables. We also explore the orthogonal dual group, which has a similar behavior
Chqondi, Soumia. "Etude théorique de petits systèmes quantiques en champ laser intenses (infrarouges et/ou hautes fréquences)". Thesis, Paris 6, 2016. http://www.theses.fr/2016PA066546/document.
Texto completoThe interaction between laser radiation and atomic system, can lead to various physical processes such as photoionization, multiphoton ionization, tunneling ionization, High Order Harmonic Generation ... The importance of each of these processes is in fact dependent on the intensity and frequency of the laser field. In this thesis, we describe the interaction of a laser field (Infrared and / or high frequencie) with hydrogen (arche-type of a system with one active electron). We first developed numerical methods for solving the time-dependant Schrödinger equation of time describing the hydrogen atom laser system. These methods allowed us to write a numerical code for the simulation of solutions of this equation. We then used, after the verification of the numerical convergence of our program to present the results on the single-photon photoionization on multiphoton ionization. We also concentrate on another phenomenon resulting from the ionization process, it is absorption of photons above the ionization threshold, named process ATI (above threshold ionization). Then, we will apply this numerical code to the photoionization hydrogen combining two photons, infrared (low frequency) and one of its harmonics (high frequency). Finally, a calculation of the angular distribution of the emitted electron was carried out numerically
Henon, Ericka. "Le choix d'un circuit de revente : recherche de contrôle sur la transaction et processus de décision du revendeur". Thesis, Dijon, 2016. http://www.theses.fr/2016DIJOE008.
Texto completoAtas, Yasar Yilmaz. "Quelques aspects du chaos quantique dans les systèmes de N-corps en interaction : chaînes de spins quantiques et matrices aléatoires". Thesis, Paris 11, 2014. http://www.theses.fr/2014PA112221/document.
Texto completoMy thesis is devoted to the study of some aspects of many body quantum interacting systems. In particular we focus on quantum spin chains. I have studied several aspects of quantum spin chains, from both numerical and analytical perspectives. I addressed especially questions related to the structure of eigenfunctions, the level densities and the spectral properties of spin chain Hamiltonians. In this thesis, I first present the basic numerical techniques used for the computation of eigenvalues and eigenvectors of spin chain Hamiltonians. Level densities of quantum models are important and simple quantities that allow to characterize spectral properties of systems with large number of degrees of freedom. It is well known that the level densities of most integrable models tend to the Gaussian in the thermodynamic limit. However, it appears that in certain limits of coupling of the spin chain to the magnetic field and for finite number of spins on the chain, one observes peaks in the level density. I will show that the knowledge of the first two moments of the Hamiltonian in the degenerate subspace associated with each peak give a good approximation to the level density. Next, I study the statistical properties of the eigenvalues of spin chain Hamiltonians. One of the main achievements in the study of the spectral statistics of quantum complex systems concerns the universal behaviour of the fluctuation of measure such as the distribution of spacing between two consecutive eigenvalues. These fluctuations are very well described by the theory of random matrices but the comparison with the theoretical prediction generally requires a transformation of the spectrum of the Hamiltonian called the unfolding procedure. For many-body quantum systems, the size of the Hilbert space generally grows exponentially with the number of particles leading to a lack of data to make a proper statistical study. These constraints have led to the introduction of a new measure free of the unfolding procedure and based on the ratio of consecutive level spacings rather than the spacings themselves. This measure is independant of the local level density. By following the Wigner surmise for the computation of the level spacing distribution, I obtained approximation for the distribution of the ratio of consecutive level spacings by analyzing random 3x3 matrices for the three canonical ensembles. The prediction are compared with numerical results showing excellent agreement. Finally, I investigate eigenfunction statistics of some canonical spin-chain Hamiltonians. Eigenfunctions together with the energy spectrum are the fundamental objects of quantum systems: their structure is quite complicated and not well understood. Due to the exponential growth of the size of the Hilbert space, the study of eigenfunctions is a very difficult task from both analytical and numerical points of view. I demonstrate that the groundstate eigenfunctions of all canonical models of spin chain are multifractal, by computing numerically the Rényi entropy and extrapolating it to obtain the multifractal dimensions
Nguyen, Kim Thuat. "Lightweight security protocols for IP-based Wireless Sensor Networks and the Internet of Things". Thesis, Evry, Institut national des télécommunications, 2016. http://www.theses.fr/2016TELE0025/document.
Texto completoThe Internet of Things (IoT) enables billions of embedded computing devices to connect to each other. The smart things cover our everyday friendly devices, such as, thermostats, fridges, ovens, washing machines, and TV sets. It is easy to imagine how bad it would be, if these devices were spying on us and revealing our personal information. It would be even worse if critical IoT applications, for instance, the control system in nuclear reactors, the vehicle safety system or the connected medical devices in health-care, were compromised. To counteract these security threats in the IoT, robust security solutions must be considered. However, IoT devices are limited in terms of memory, computation and energy capacities, in addition to the lack of communication reliability. All these inconvenients make them vulnerable to various attacks, as they become the weakest links of our information system. In this context, we seek for effective security mechanisms in order to establish secure communications between unknown IoT devices, while taking into account the security requirements and the resource constraints of these devices. To do so, we focus on two major challenges, namely, lightweight security protocols in terms of processing and infrastructure and lightweight key establishment mechanisms, as existing solutions are too much resource consuming. To address this first challenge, we first propose ECKSS - a new lightweight signcryption scheme which does not rely on a PKI. This proposal enables to encrypt and sign messages simultaneously while ensuring the confidentiality and unforgeability of the communication channels. In addition, the message exchanges are authenticated without relying on certificates. Moreover, we also propose OEABE which is a delegation-based mechanism for the encryption of the Ciphertext-Policy Attribute-Based Encryption (CP-ABE). CP-ABE is anattribute-based public key encryption scheme that gives users the flexibility to determine who can decrypt their data at runtime. Our solution enables a resource-constrained device to generate rapidly a CP-ABE ciphertext with authorization access rights to its data. This solution is particularly useful as the volume of data issued from IoT devices grows exponentially every year. To solve the second challenge, we first propose two new key distribution modes for the standard key management protocol MIKEY, based on our signcryption scheme ECKSS. These modes inherit the lightness of ECKSS and avoid the use of PKI. The experimental results, conducted in the Openmote sensor platform, have proven the efficiency of our solutions compared with other existing methods of MIKEY. Then, we propose a new key agreement scheme, named AKAPR. In case the two communicating parties are involved in the key negotiation procedure, AKAPR is very suitable in the context of IoT. As such, it can operate even if the two communicating parties are highly resource-constrained
Guellil, Imene. "Nano-fonctionnalisation par FIB haute résolution de silicium". Electronic Thesis or Diss., Aix-Marseille, 2022. http://www.theses.fr/2022AIXM0361.
Texto completoThe goal of this work is to develop a process for the elaboration of silicon-germanium (SiGe) quantum dots (QDs) with compositions ranging from Si to pure Ge, and allowing to obtain semiconducting QDs with sufficiently small sizes to obtain quantum confinement. For this purpose, we have used a combination of different techniques: molecular beam epitaxy, focused ion beam lithography (FIBL) and heterogeneous solid state dewetting. In this context, the aim of this research is on the one hand to develop a new FIB that can be coupled to the ultra-high vacuum molecular beam epitaxy growth chamber, and on the other hand to realize two applications: (i) nanopatterns for the self-organisation of Si and Ge QDs and (ii) nano-implantations of Si and Ge. We used FIBL with energy-filtered liquid metal alloy ion sources (LMAIS) using non-polluting ions (Si and Ge) for the milling of conventional microelectronic substrates such as SiGe on silicon-on-insulator (SGOI). The nanopatterns must be totally free of pollution and with variable and perfectly controlled characteristics (size, density, depth). The morphology of the nanopatterns is then characterized in-situ by scanning electron microscopy (SEM), and the depth is determined ex-situ by atomic force microscopy (AFM). The nanopatterns made by FIBL were compared on the one hand to plasma etchings with He and Ne and on the other hand to the etchings obtained by electronic lithography (EBL). Nanoimplantations of Si and Ge ions were realised in diamond and in ultra-thin SGOI for the fabrication of local defects
Nguyen, Kim Thuat. "Lightweight security protocols for IP-based Wireless Sensor Networks and the Internet of Things". Electronic Thesis or Diss., Evry, Institut national des télécommunications, 2016. http://www.theses.fr/2016TELE0025.
Texto completoThe Internet of Things (IoT) enables billions of embedded computing devices to connect to each other. The smart things cover our everyday friendly devices, such as, thermostats, fridges, ovens, washing machines, and TV sets. It is easy to imagine how bad it would be, if these devices were spying on us and revealing our personal information. It would be even worse if critical IoT applications, for instance, the control system in nuclear reactors, the vehicle safety system or the connected medical devices in health-care, were compromised. To counteract these security threats in the IoT, robust security solutions must be considered. However, IoT devices are limited in terms of memory, computation and energy capacities, in addition to the lack of communication reliability. All these inconvenients make them vulnerable to various attacks, as they become the weakest links of our information system. In this context, we seek for effective security mechanisms in order to establish secure communications between unknown IoT devices, while taking into account the security requirements and the resource constraints of these devices. To do so, we focus on two major challenges, namely, lightweight security protocols in terms of processing and infrastructure and lightweight key establishment mechanisms, as existing solutions are too much resource consuming. To address this first challenge, we first propose ECKSS - a new lightweight signcryption scheme which does not rely on a PKI. This proposal enables to encrypt and sign messages simultaneously while ensuring the confidentiality and unforgeability of the communication channels. In addition, the message exchanges are authenticated without relying on certificates. Moreover, we also propose OEABE which is a delegation-based mechanism for the encryption of the Ciphertext-Policy Attribute-Based Encryption (CP-ABE). CP-ABE is anattribute-based public key encryption scheme that gives users the flexibility to determine who can decrypt their data at runtime. Our solution enables a resource-constrained device to generate rapidly a CP-ABE ciphertext with authorization access rights to its data. This solution is particularly useful as the volume of data issued from IoT devices grows exponentially every year. To solve the second challenge, we first propose two new key distribution modes for the standard key management protocol MIKEY, based on our signcryption scheme ECKSS. These modes inherit the lightness of ECKSS and avoid the use of PKI. The experimental results, conducted in the Openmote sensor platform, have proven the efficiency of our solutions compared with other existing methods of MIKEY. Then, we propose a new key agreement scheme, named AKAPR. In case the two communicating parties are involved in the key negotiation procedure, AKAPR is very suitable in the context of IoT. As such, it can operate even if the two communicating parties are highly resource-constrained
Tunaru, Iulia. "Physical layer secret key generation for decentralized wireless networks". Thesis, Rennes 1, 2015. http://www.theses.fr/2015REN1S081/document.
Texto completoEmerging decentralized wireless systems, such as sensor or ad-hoc networks, will demand an adequate level of security in order to protect the private and often sensitive information that they carry. The main security mechanism for confidentiality in such networks is symmetric cryptography, which requires the sharing of a symmetric key between the two legitimate parties. According to the principles of physical layer security, wireless devices within the communication range can exploit the wireless channel in order to protect their communications. Due to the theoretical reciprocity of wireless channels, the spatial decorrelation property (e.g., in rich scattering environments), as well as the fine temporal resolution of the Impulse Radio - Ultra Wideband (IR-UWB) technology, directly sampled received signals or estimated channel impulse responses (CIRs) can be used for symmetric secret key extraction under the information-theoretic source model. Firstly, we are interested in the impact of quantization and channel estimation algorithms on the reciprocity and on the random aspect of the generated keys. Secondly, we investigate alternative ways of limiting public exchanges needed for the reconciliation phase. Finally, we develop a new signal-based method that extends the point-to-point source model to cooperative contexts with several nodes intending to establish a group key
Albergamo, Francesco. "Etude par diffusion de neutrons des proprietes dynamiques de l'helium liquide confine dans des milieux poreux". Phd thesis, Université Paris Sud - Paris XI, 2001. http://tel.archives-ouvertes.fr/tel-00006127.
Texto completoPlé, Thomas. "Nuclear Quantum Dynamics : exploration and comparison of trajectory-based methods". Electronic Thesis or Diss., Sorbonne université, 2020. http://www.theses.fr/2020SORUS413.
Texto completoThis thesis addresses the problem of nuclear quantum dynamics and focuses on trajectory-based methods, in the context of the computation of quantum vibration spectra of large condensed-phase systems. We introduce a new approximation to the Wigner thermal density based on the Edgeworth expansion which is not subject to the oscillating sign problem and show that it performs better than its most common alternatives. We use this approximation to compute time correlation functions (TCFs) in the context of linearized semi-classical initial value representation. We also introduce an original Langevin dynamics, the Wigner-Langevin dynamics, that rigorously conserves the Edgeworth approximation and show that it can be used to compute approximate TCFs. In the second part of this thesis, we combine perturbative analysis with numerical calculations to examine the performance of different quasiclassical approaches to capture anharmonic spectral features (overtones, combination bands and Fermi resonances) in model systems of increasing complexity. Our results indicate that the intertwined effects of initial quantum sampling and propagation is non-trivial and that lack of coherence does not necessarily imply that trajectory-based methods are inherently (or equally) incapable of capturing finer spectral features. Finally, we assess the performance of the recently introduced adaptive Quantum Thermal Bath (adQTB) on liquid and solid water. We found that the adQTB largely increases the accuracy over the standard QTB, that it is in good agreement with path-integrals references for structural properties and yields infrared spectra comparable to state-of-the-art quasiclassical methods
Kaiser, Florian. "Ingénierie de l'intrication photonique pour l'information quantique et l'optique quantique fondamentale". Phd thesis, Université de Nice Sophia-Antipolis, 2012. http://tel.archives-ouvertes.fr/tel-00777002.
Texto completoJacqmin, Thibaut. "Mesures de corrélations dans un gaz de bosons unidimensionnel sur puce". Phd thesis, Université Paris Sud - Paris XI, 2012. http://tel.archives-ouvertes.fr/tel-00779447.
Texto completoMoquin, Alexandre. "Points quantiques : caractérisation et applications en sciences pharmaceutiques". Thèse, 2014. http://hdl.handle.net/1866/11758.
Texto completoMedical imaging based on fluorescence has suffered from the poor photostability and mediocre performance of organic fluorophores. The discovery and subsequent improvements in nanocrystal synthesis and functionalization has greatly benefited the applications in medical imaging and the development of nanocrystal-based sensors for diagnostics. QDs are semi-conductor nanocrystals which have similar sizes as proteins (2-10 nm). They are highly luminescent, and can be made to emit at any desired wavelength by varying their size and composition. The surface of QDs can be easily functionalized with biomolecules. Hence, it is interesting to study how QDs interact in the biological world. Highly luminescent core-shell QDs emitting at different wavelengths were prepared according to our needs. In a first study, the surface of the QDs was modified with various small bi-functional thiolated ligands (carboxylated, aminated and zwitterionic). The modified-QDs of nearly identical sizes were administered in vitro to study the impact of surface charge and cell type on the mode and extent of cell uptake and elimination. Using specific inhibitors of cell uptake we determined which modes contributed to the internalization of the QDs. Endocytosis mediated by lipid rafts represented the predominant pathway for the internalization of QDs. However, other modes contributed to a lesser degree, depending on the surface ligand. We then analyzed the effect of QD agglomeration in cell culture media on its cellular uptake by microglia. Thorough characterization of QD agglomerate size distribution was conducted by asymmetrical flow field-flow fractionation (AF4) with a dynamic light scattering detector. Depending on the type of surface ligand and if serum proteins were present, the agglomeration pattern of the QDs was significantly different. With inhibitors of specific modes of cell uptake, we showed that the size distribution data, obtained by AF4, correlated with the modes of cell uptake. Microglia cells are immune cells of the central nervous system (CNS). They respond to injury or the presence of inflammagens by producing pro-inflammatory cytokine. Inflammation in the CNS may lead to loss of neurons, and can found in many chronic diseases. We were interested in building nanosensors to measure the onset of inflammation. Current methods to study inflammation consist in measuring levels of certain proteins or chemicals released by stressed cell (e.g. Western blot or ELISA assay for IL-1β). Although precise, these methods measure indirectly the activity of the enzyme responsible for releasing IL-1β, i.e. caspase-1. Moreover, these methods cannot be applied to live cells. We designed a sensor based on FRET between a QD and a dye linked by a peptide specifically cleaved by the caspase-1. To induce inflammation, we applied lipopolysaccharides (LPS), which are endotoxins present in Gram negative bacteria responsible for sceptic shock. The LPS form nanoparticles due to their amphiphilicity. The interior hydrophobic regions were used to load hydrophobic QDs, making the LPS luminescent. The microglia internalized LPS-QD predominantly through TLR-4 membrane receptors. We describe how the LPS induce inflammation and demonstrated the functionality of the QD-based sensor. Eventually, the sensor could be used to monitor in real time the action of therapeutics against inflammation.
Gravel, Claude. "Échantillonnage des distributions continues non uniformes en précision arbitraire et protocole pour l'échantillonnage exact distribué des distributions discrètes quantiques". Thèse, 2015. http://hdl.handle.net/1866/12337.
Texto completoThe thesis is divided mainly into two parts. Chapters 2 and 3 contain the first part. Chapters 4 and 5 contain the second part. The first part is about sampling non uniform continuous distributions with a given level of precision. Knuth and Yao showed in 1976 how to sample exactly any discrete distribution using a source of unbiased identically and independently distributed bits. The first part of this thesis extends the theory of Knuth and Yao to non uniform continuous distributions once the precision is fixed. A lower bound and upper bounds for generic algorithms based on discretization or inversion are given as well. In addition, a new simple proof of the original result of Knuth and Yao is given here. The second part is about the solution of a problem in communication complexity that originally appeared within the field of quantum information science. Given a network of N computers with a server capable of generating random unbiased bits and a parametric discrete distribution with a vector of N real parameters where each computer owns one and only one parameter, a protocol to sample exactly the distribution in a distributed manner is given here.