Literatura académica sobre el tema "Distributed reflectometry"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Distributed reflectometry".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Distributed reflectometry"
Mizuno, Yosuke, Neisei Hayashi, Hideyuki Fukuda, Kwang Yong Song y Kentaro Nakamura. "Ultrahigh-speed distributed Brillouin reflectometry". Light: Science & Applications 5, n.º 12 (30 de junio de 2016): e16184-e16184. http://dx.doi.org/10.1038/lsa.2016.184.
Texto completoGorlov, N. I. y I. V. Bogachkov. "DISTRIBUTED SENSING OF FIBER-OPTIC COMMUNICATION LINES USING BRILLOUIN SCATTERING". DYNAMICS OF SYSTEMS, MECHANISMS AND MACHINES 11, n.º 4 (2023): 71–75. http://dx.doi.org/10.25206/2310-9793-2023-11-4-71-75.
Texto completoZahoor, Rizwan, Raffaele Vallifuoco, Luigi Zeni y Aldo Minardo. "Distributed Temperature Sensing through Network Analysis Frequency-Domain Reflectometry". Sensors 24, n.º 7 (8 de abril de 2024): 2378. http://dx.doi.org/10.3390/s24072378.
Texto completoVolanthen, M., H. Geiger y J. P. Dakin. "Distributed grating sensors using low-coherence reflectometry". Journal of Lightwave Technology 15, n.º 11 (1997): 2076–82. http://dx.doi.org/10.1109/50.641525.
Texto completoDominauskas, Aurimas, Dirk Heider y John W. Gillespie. "Electric time-domain reflectometry distributed flow sensor". Composites Part A: Applied Science and Manufacturing 38, n.º 1 (enero de 2007): 138–46. http://dx.doi.org/10.1016/j.compositesa.2006.01.019.
Texto completoBao, Xiaoyi y Yuan Wang. "Recent Advancements in Rayleigh Scattering-Based Distributed Fiber Sensors". Advanced Devices & Instrumentation 2021 (11 de marzo de 2021): 1–17. http://dx.doi.org/10.34133/2021/8696571.
Texto completoRahman, Saifur, Farman Ali, Fazal Muhammad, Muhammad Irfan, Adam Glowacz, Mohammed Shahed Akond, Ammar Armghan, Salim Nasar Faraj Mursal, Amjad Ali y Fahad Salem Alkahtani. "Analyzing Distributed Vibrating Sensing Technologies in Optical Meshes". Micromachines 13, n.º 1 (5 de enero de 2022): 85. http://dx.doi.org/10.3390/mi13010085.
Texto completoKiyozumi, Takaki, Tomoya Miyamae, Kohei Noda, Heeyoung Lee, Kentaro Nakamura y Yosuke Mizuno. "Super-simplified optical correlation-domain reflectometry". Japanese Journal of Applied Physics 61, n.º 7 (1 de julio de 2022): 078005. http://dx.doi.org/10.35848/1347-4065/ac7272.
Texto completoFan, Xinyu, Bin Wang, Guangyao Yang y Zuyuan He. "Slope-Assisted Brillouin-Based Distributed Fiber-Optic Sensing Techniques". Advanced Devices & Instrumentation 2021 (14 de julio de 2021): 1–16. http://dx.doi.org/10.34133/2021/9756875.
Texto completoZhou, Da-Peng, Liang Chen y Xiaoyi Bao. "Distributed dynamic strain measurement using optical frequency-domain reflectometry". Applied Optics 55, n.º 24 (18 de agosto de 2016): 6735. http://dx.doi.org/10.1364/ao.55.006735.
Texto completoTesis sobre el tema "Distributed reflectometry"
Luo, Linqing. "Time-frequency localisation of distributed Brillouin Optical Time Domain Reflectometry". Thesis, University of Cambridge, 2018. https://www.repository.cam.ac.uk/handle/1810/274568.
Texto completoWu, Nan. "Optical Frequency Domain Reflectometry Based Quasi-distributed High Temperature Sensor". Thesis, Virginia Tech, 2013. http://hdl.handle.net/10919/76905.
Texto completoMaster of Science
Ek, Simon. "Distributed Temperature Sensing Using Phase-Sensitive Optical Time Domain Reflectometry". Thesis, KTH, Tillämpad fysik, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-285902.
Texto completoDet här examensarbetet utforskar och utvärderar förmågorna att mäta temperatur hos en fas-känslig optisk tidsdomän-reflektometer (φ-OTDR), som utnyttjar bakåtriktad Rayleigh-spridning i vanliga optiska singelmodfibrer. Anordningen konstrueras och dess komponentstruktur förklaras, och ett protokoll tas fram för att utföra mätningar med den. Prestandatester utförs och anordningen visas kapabel att göra fullt distribuerade temperaturmätningar längs hundratals meter långa fibrer, med en rymdsupplösning på 1 m och en temperaturupplösning på 0.1 K. Dessutom testas förmågan att mäta normaltöjning hos testfibern med samma metod, dock med mindre framgång. Anordningen är väldigt känslig för förhållandena i omgivningen runt mätningsfibern, vilket gör den kapabel till mätningar med mycket hög precision, men också mottaglig för störningar. Lite diskussion hålls kring hur dessa störningar kan undvikas eller hanteras. Vidare visas att mätningstekniken kan köras samtidigt som andra φ-OTDR-baserade tekniker från samma anordning.
Saunders, Charles T. W. "Optical fibre sensing by time domain reflectometry". Thesis, University of Manchester, 2006. https://www.research.manchester.ac.uk/portal/en/theses/distributed-optical-fibre-sensing(f1857f29-5af2-4e94-97dd-164f3d67f29b).html.
Texto completoStastny, Jeffrey Allen. "Time domain reflectometry (TDR) techniques for the design of distributed sensors". Thesis, This resource online, 1992. http://scholar.lib.vt.edu/theses/available/etd-09122009-040407/.
Texto completoRen, Meiqi. "Distributed Optical Fiber Vibration Sensor Based on Phase-Sensitive Optical Time Domain Reflectometry". Thesis, Université d'Ottawa / University of Ottawa, 2016. http://hdl.handle.net/10393/34400.
Texto completoBolen, Ryan. "A study of optical frequency domain reflectometry and its associated distributed sensor applications". Thesis, University of Ottawa (Canada), 2010. http://hdl.handle.net/10393/28464.
Texto completoRizzolo, Serena. "Advantages and limitations of distributed optical-frequency-domain-reflectometry for optical fiber-based sensors in harsh environments". Thesis, Lyon, 2016. http://www.theses.fr/2016LYSES013.
Texto completoFukushima-Daiichi event on March 11th, 2011, signed a turning point in nuclear industry by highlighting several weaknesses in the control of critical systems that ensure the safety in nuclear power plant (NPP) operating, particularly, in accidentals conditions. This PhD thesis has been carried out in collaboration with AREVA, the French industrial group active in the energy domain, with the aim of realizing optical fiber sensors resistant to the harsh environment constraints of a NPP and, in particular, to monitor temperature and water level several parameters inside the spent fuel pools (SFPs). It consists of two parts organized in 7 chapters. In the first part, chapter 1 deals with the phenomena contributing to the light attenuation during its propagation along the fiber and gives an overview on the radiation effects on optical fibers. To identify the most promising technique suitable for AREVA needs, in chapter 2 is reported the state-of-the-art on the distributed OFSs with particular attention to their employment in radiation environments. The last part of this chapter is devoted to the detailed description of the OFDR that is the selected sensor technique for this application. The second part is devoted to present and discuss the obtained results. Chapter 3 gives the experimental details on radiation and thermal treatments, investigated samples and used setups. In order to determine the best fiber/setup combination, a systematic study on temperature and strain distributed sensors was carried out in relation to the harsh constraints demanded from the application. The permanent radiation (MGy dose levels) effects on different fiber classes are investigated in Chapter 4. Chapter 5 illustrates in situ measurements on radiation resistant fibers to understand the combined temperature and radiation (X-rays) effects representative of the SFP nominal and accidental conditions. Simultaneously, we have developed the OFS design for its integration at SFP facility. The prototype is described and its performance is evaluated in chapter 6. Then, the main conclusion and perspective are discussed
L'incidente di Fukushima-Daiichi dell’11 marzo 2011 ha segnato un punto di svolta per l’industria nucleare, mettendo in evidenza diversi punti deboli nel controllo di sistemi critici che garantiscono la sicurezza nelle centrali, in particolare in condizioni di incidente. Questa tesi è stata condotta in collaborazione con AREVA, il gruppo industriale francese attivo nel settore dell'energia, con l'obiettivo di produrre sensori a fibra ottica resistenti alle condizioni estreme di una centrale nucleare e, in particolare, per controllare diversi parametri all'interno di una piscina di stoccaggio di combustibile nucleare, quali la temperatura e il livello dell'acqua. La tesi si compone di due parti organizzate in 7 capitoli. Nella prima parte, il capitolo 1 riguarda i fenomeni che contribuiscono all'attenuazione della luce durante la sua propagazione nella fibra e permette di comprendere gli effetti della radiazione sulle fibre ottiche. Per identificare la tecnologia più promettente per le esigenze di AREVA, nel capitolo 2 é discusso lo stato dell’arte sui sensori distribuiti con particolare attenzione alle loro performance in ambienti radiativi. L'ultima parte di questo capitolo è dedicato ad una descrizione dettagliata della tecnica OFDR che è la tecnologia scelta per questa applicazione. La seconda parte è dedicata a presentare e discutere i risultati. Il capitolo 3 fornisce i dettagli sui campioni studiati e i trattamenti effettuati su di essi e descrive il setup utilizzato. Per determinare la migliore combinazione fibra/tecnica per l’applicazione prevista, è stato eseguito uno studio sistematico sulla risposta alla radiazione dei sensori distribuiti di temperatura e strain. Glieffetti permanenti della radiazione (dosi dell’ordine del MGy) su diverse classi di fibre, resistenti e sensibili alle radiazioni, sono discussi nel capitolo 4. Il capitolo 5 riporta le misure in situ sulle fibre resistenti alla radiazione per investigare gli effetti combinati di temperatura e radiazioni (raggi X) rappresentativi delle condizioni operative e accidentali nelle piscine di stoccaggio. Infine, abbiamo sviluppato un prototipo di sensore del livello dell’acqua nelle piscine di stoccaggio che è descritto nel capitolo 6. In seguito, le principali conclusioni e le prospettive sono discusse
Randall, Summer Lockerbie. "Development and utilization of optical low coherence reflectometry for the study of multiple scattering in randomly distributed solid-liquid suspensions /". Thesis, Connect to this title online; UW restricted, 2004. http://hdl.handle.net/1773/8672.
Texto completoBergdoll, Greg M. "Characterization of two Vernier-Tuned Distributed Bragg Reflector (VT-DBR) Lasers used in Swept Source Optical Coherence Tomography (SS-OCT)". DigitalCommons@CalPoly, 2015. https://digitalcommons.calpoly.edu/theses/1461.
Texto completoCapítulos de libros sobre el tema "Distributed reflectometry"
Pradhan, Himansu Shekhar, P. K. Sahu, D. Ghosh y S. Mahapatra. "Brillouin Distributed Temperature Sensor Using Optical Time Domain Reflectometry Techniques". En Smart Sensors, Measurement and Instrumentation, 207–21. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-42625-9_10.
Texto completoSallem, Soumaya, Ousama Osman, Laurent Sommervogel, Marc Olivas, Arnaud Peltier, Françoise Paladian y Pierre Bonnet. "Wired Network Distributed Diagnosis and Sensors Communications by Multi-carrier Time Domain Reflectometry". En Advances in Intelligent Systems and Computing, 1038–46. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-030-01057-7_77.
Texto completo"Principles of Optical Time-Domain Reflectometry (OTDR) for Distributed Sensing". En An Introduction to Distributed Optical Fibre Sensors, 55–106. CRC Press, 2017. http://dx.doi.org/10.1201/9781315119014-4.
Texto completoShishkin, Victor, Kenji Tanaka y Hideaki Murayama. "Proposal on Miniaturization of Distributed Sensing System Based on Optical Frequency Domain Reflectometry". En Advances in Transdisciplinary Engineering. IOS Press, 2019. http://dx.doi.org/10.3233/atde190103.
Texto completo"Distributed strain measurement in steel slab-on-girder bridge via Brillouin optical time domain reflectometry". En Advances in Bridge Maintenance, Safety Management, and Life-Cycle Performance, Set of Book & CD-ROM, 899–900. CRC Press, 2015. http://dx.doi.org/10.1201/b18175-367.
Texto completoActas de conferencias sobre el tema "Distributed reflectometry"
Yoon, Myung-Keun, Daniel F. Dolan y Steve Gabriel. "Time domain reflectometry as a distributed strain sensor". En The 15th International Symposium on: Smart Structures and Materials & Nondestructive Evaluation and Health Monitoring, editado por Masayoshi Tomizuka. SPIE, 2008. http://dx.doi.org/10.1117/12.776224.
Texto completoKreger, Stephen T., Emily Templeton, Daniel Kominsky y Brian Templeton. "Distributed polarization state sensing with optical frequency domain reflectometry". En Fiber Optic Sensors and Applications XVI, editado por Glen A. Sanders, Robert A. Lieberman y Ingrid U. Scheel. SPIE, 2019. http://dx.doi.org/10.1117/12.2519184.
Texto completoXiao, Hu, Huafeng Lu, Zeheng Zhang, Guolu Yin y Tao Zhu. "Distributed pH sensing based on optical frequency domain reflectometry". En 2021 International Conference on Optical Instruments and Technology: Optical Sensors and Applications, editado por Xuping Zhang, Yuncai Wang y Hai Xiao. SPIE, 2022. http://dx.doi.org/10.1117/12.2616491.
Texto completoGorlov, Nikolai I. y Igor V. Bogachkov. "Distributed Fiber-Optic Probing using the Optical Reflectometry Method". En 2022 IEEE International Multi-Conference on Engineering, Computer and Information Sciences (SIBIRCON). IEEE, 2022. http://dx.doi.org/10.1109/sibircon56155.2022.10016922.
Texto completoHu, Zihe, Can Zhao y Ming Tang. "Distributed Optical Phase-sensitive Reflectometry Based on Continuous FrFT-DC Signal". En Optical Fiber Sensors. Washington, D.C.: Optica Publishing Group, 2023. http://dx.doi.org/10.1364/ofs.2023.th6.13.
Texto completoDeng, Yuanpeng, Qinwen Liu, He li, Zhiwei Dai y Zuyuan He. "Quasi-distributed Temperature Sensing with Enhanced Measurement Range Using OFDR and Weak Reflectors". En Optical Fiber Sensors. Washington, D.C.: Optica Publishing Group, 2022. http://dx.doi.org/10.1364/ofs.2022.th4.20.
Texto completoTürker, Volkan, Faruk Uyar, Tolga Kartaloğlu, Ekmel Özbay y İbrahim Özdür. "Long-Range Distributed Acoustic Sensor Based on 3x3 Coupler Assisted Passive Demodulation Scheme". En CLEO: Applications and Technology. Washington, D.C.: Optica Publishing Group, 2022. http://dx.doi.org/10.1364/cleo_at.2022.am3m.3.
Texto completoOrsuti, Daniele, Arman Aitkulov, Martina Cappelletti, Luca Schenato, Mirko Magarotto, Marco Santagiustina, Cristian Antonelli et al. "Multi-core Fibers as a Technological Platform for Distributed Twist Sensing". En Optical Fiber Sensors. Washington, D.C.: Optica Publishing Group, 2023. http://dx.doi.org/10.1364/ofs.2023.th6.27.
Texto completoXie, Dongcheng, Xiang Zhang, Yicheng Lin, Cuofu Lin, Jun Yang, Yuncai Wang y Yuwen Qin. "High Accuracy Distributed Birefringence Measurement of Polarization Maintaining Fiber Based on OFDR". En Optical Fiber Sensors. Washington, D.C.: Optica Publishing Group, 2023. http://dx.doi.org/10.1364/ofs.2023.tu3.73.
Texto completoShatalin, Sergey V., Vladimir N. Treschikov y Alan J. Rogers. "Interferometric optical time-domain reflectometry for distributed optical fiber sensing". En SPIE's International Symposium on Optical Science, Engineering, and Instrumentation, editado por Ryszard J. Pryputniewicz, Gordon M. Brown y Werner P. O. Jueptner. SPIE, 1998. http://dx.doi.org/10.1117/12.316448.
Texto completo