Literatura académica sobre el tema "Distributed optimization and learning"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Distributed optimization and learning".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Distributed optimization and learning"
Kamalesh, Kamalesh y Dr Gobi Natesan. "Machine Learning-Driven Analysis of Distributed Computing Systems: Exploring Optimization and Efficiency". International Journal of Research Publication and Reviews 5, n.º 3 (9 de marzo de 2024): 3979–83. http://dx.doi.org/10.55248/gengpi.5.0324.0786.
Texto completoMertikopoulos, Panayotis, E. Veronica Belmega, Romain Negrel y Luca Sanguinetti. "Distributed Stochastic Optimization via Matrix Exponential Learning". IEEE Transactions on Signal Processing 65, n.º 9 (1 de mayo de 2017): 2277–90. http://dx.doi.org/10.1109/tsp.2017.2656847.
Texto completoGratton, Cristiano, Naveen K. D. Venkategowda, Reza Arablouei y Stefan Werner. "Privacy-Preserved Distributed Learning With Zeroth-Order Optimization". IEEE Transactions on Information Forensics and Security 17 (2022): 265–79. http://dx.doi.org/10.1109/tifs.2021.3139267.
Texto completoBlot, Michael, David Picard, Nicolas Thome y Matthieu Cord. "Distributed optimization for deep learning with gossip exchange". Neurocomputing 330 (febrero de 2019): 287–96. http://dx.doi.org/10.1016/j.neucom.2018.11.002.
Texto completoYoung, M. Todd, Jacob D. Hinkle, Ramakrishnan Kannan y Arvind Ramanathan. "Distributed Bayesian optimization of deep reinforcement learning algorithms". Journal of Parallel and Distributed Computing 139 (mayo de 2020): 43–52. http://dx.doi.org/10.1016/j.jpdc.2019.07.008.
Texto completoNedic, Angelia. "Distributed Gradient Methods for Convex Machine Learning Problems in Networks: Distributed Optimization". IEEE Signal Processing Magazine 37, n.º 3 (mayo de 2020): 92–101. http://dx.doi.org/10.1109/msp.2020.2975210.
Texto completoLin, I.-Cheng. "Learning and Optimization over Robust Networked Systems". ACM SIGMETRICS Performance Evaluation Review 52, n.º 3 (9 de enero de 2025): 23–26. https://doi.org/10.1145/3712170.3712179.
Texto completoGao, Hongchang. "Distributed Stochastic Nested Optimization for Emerging Machine Learning Models: Algorithm and Theory". Proceedings of the AAAI Conference on Artificial Intelligence 37, n.º 13 (26 de junio de 2023): 15437. http://dx.doi.org/10.1609/aaai.v37i13.26804.
Texto completoChoi, Dojin, Jiwon Wee, Sangho Song, Hyeonbyeong Lee, Jongtae Lim, Kyoungsoo Bok y Jaesoo Yoo. "k-NN Query Optimization for High-Dimensional Index Using Machine Learning". Electronics 12, n.º 11 (24 de mayo de 2023): 2375. http://dx.doi.org/10.3390/electronics12112375.
Texto completoYang, Peng y Ping Li. "Distributed Primal-Dual Optimization for Online Multi-Task Learning". Proceedings of the AAAI Conference on Artificial Intelligence 34, n.º 04 (3 de abril de 2020): 6631–38. http://dx.doi.org/10.1609/aaai.v34i04.6139.
Texto completoTesis sobre el tema "Distributed optimization and learning"
Funkquist, Mikaela y Minghua Lu. "Distributed Optimization Through Deep Reinforcement Learning". Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-293878.
Texto completoFörstärkningsinlärningsmetoder tillåter självlärande enheter att spela video- och brädspel autonomt. Projektet siktar på att studera effektiviteten hos förstärkningsinlärningsmetoderna Q-learning och deep Q-learning i dynamiska problem. Målet är att träna upp robotar så att de kan röra sig genom ett varuhus på bästa sätt utan att kollidera. En virtuell miljö skapades, i vilken algoritmerna testades genom att simulera agenter som rörde sig. Algoritmernas effektivitet utvärderades av hur snabbt agenterna lärde sig att utföra förutbestämda uppgifter. Resultatet visar att Q-learning fungerar bra för enkla problem med få agenter, där system med två aktiva agenter löstes snabbt. Deep Q-learning fungerar bättre för mer komplexa system som innehåller fler agenter, men fall med suboptimala rörelser uppstod. Båda algoritmerna visade god potential inom deras respektive områden, däremot måste förbättringar göras innan de kan användas i verkligheten.
Kandidatexjobb i elektroteknik 2020, KTH, Stockholm
Konečný, Jakub. "Stochastic, distributed and federated optimization for machine learning". Thesis, University of Edinburgh, 2017. http://hdl.handle.net/1842/31478.
Texto completoArmond, Kenneth C. Jr. "Distributed Support Vector Machine Learning". ScholarWorks@UNO, 2008. http://scholarworks.uno.edu/td/711.
Texto completoPatvarczki, Jozsef. "Layout Optimization for Distributed Relational Databases Using Machine Learning". Digital WPI, 2012. https://digitalcommons.wpi.edu/etd-dissertations/291.
Texto completoOuyang, Hua. "Optimal stochastic and distributed algorithms for machine learning". Diss., Georgia Institute of Technology, 2013. http://hdl.handle.net/1853/49091.
Texto completoEl, Gamal Mostafa. "Distributed Statistical Learning under Communication Constraints". Digital WPI, 2017. https://digitalcommons.wpi.edu/etd-dissertations/314.
Texto completoDai, Wei. "Learning with Staleness". Research Showcase @ CMU, 2018. http://repository.cmu.edu/dissertations/1209.
Texto completoLu, Yumao. "Kernel optimization and distributed learning algorithms for support vector machines". Diss., Restricted to subscribing institutions, 2005. http://uclibs.org/PID/11984.
Texto completoDinh, The Canh. "Distributed Algorithms for Fast and Personalized Federated Learning". Thesis, The University of Sydney, 2023. https://hdl.handle.net/2123/30019.
Texto completoReddi, Sashank Jakkam. "New Optimization Methods for Modern Machine Learning". Research Showcase @ CMU, 2017. http://repository.cmu.edu/dissertations/1116.
Texto completoLibros sobre el tema "Distributed optimization and learning"
Jiang, Jiawei, Bin Cui y Ce Zhang. Distributed Machine Learning and Gradient Optimization. Singapore: Springer Singapore, 2022. http://dx.doi.org/10.1007/978-981-16-3420-8.
Texto completoWang, Huiwei, Huaqing Li y Bo Zhou. Distributed Optimization, Game and Learning Algorithms. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-33-4528-7.
Texto completoJoshi, Gauri. Optimization Algorithms for Distributed Machine Learning. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-19067-4.
Texto completoTatarenko, Tatiana. Game-Theoretic Learning and Distributed Optimization in Memoryless Multi-Agent Systems. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-65479-9.
Texto completoOblinger, Diana G. Distributed learning. Boulder, Colo: CAUSE, 1996.
Buscar texto completoMajhi, Sudhan, Rocío Pérez de Prado y Chandrappa Dasanapura Nanjundaiah, eds. Distributed Computing and Optimization Techniques. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-2281-7.
Texto completoGiselsson, Pontus y Anders Rantzer, eds. Large-Scale and Distributed Optimization. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-97478-1.
Texto completoLü, Qingguo, Xiaofeng Liao, Huaqing Li, Shaojiang Deng y Shanfu Gao. Distributed Optimization in Networked Systems. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-19-8559-1.
Texto completoAbdulrahman Younis Ali Younis Kalbat. Distributed and Large-Scale Optimization. [New York, N.Y.?]: [publisher not identified], 2016.
Buscar texto completoOtto, Daniel, Gianna Scharnberg, Michael Kerres y Olaf Zawacki-Richter, eds. Distributed Learning Ecosystems. Wiesbaden: Springer Fachmedien Wiesbaden, 2023. http://dx.doi.org/10.1007/978-3-658-38703-7.
Texto completoCapítulos de libros sobre el tema "Distributed optimization and learning"
Joshi, Gauri y Shiqiang Wang. "Communication-Efficient Distributed Optimization Algorithms". En Federated Learning, 125–43. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-96896-0_6.
Texto completoJiang, Jiawei, Bin Cui y Ce Zhang. "Distributed Gradient Optimization Algorithms". En Distributed Machine Learning and Gradient Optimization, 57–114. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-3420-8_3.
Texto completoJiang, Jiawei, Bin Cui y Ce Zhang. "Distributed Machine Learning Systems". En Distributed Machine Learning and Gradient Optimization, 115–66. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-3420-8_4.
Texto completoJoshi, Gauri. "Distributed Optimization in Machine Learning". En Synthesis Lectures on Learning, Networks, and Algorithms, 1–12. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-19067-4_1.
Texto completoLin, Zhouchen, Huan Li y Cong Fang. "ADMM for Distributed Optimization". En Alternating Direction Method of Multipliers for Machine Learning, 207–40. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-16-9840-8_6.
Texto completoJiang, Jiawei, Bin Cui y Ce Zhang. "Basics of Distributed Machine Learning". En Distributed Machine Learning and Gradient Optimization, 15–55. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-3420-8_2.
Texto completoScheidegger, Carre, Arpit Shah y Dan Simon. "Distributed Learning with Biogeography-Based Optimization". En Lecture Notes in Computer Science, 203–15. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-21827-9_21.
Texto completoGonzález-Mendoza, Miguel, Neil Hernández-Gress y André Titli. "Quadratic Optimization Fine Tuning for the Learning Phase of SVM". En Advanced Distributed Systems, 347–57. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005. http://dx.doi.org/10.1007/11533962_31.
Texto completoWang, Huiwei, Huaqing Li y Bo Zhou. "Cooperative Distributed Optimization in Multiagent Networks with Delays". En Distributed Optimization, Game and Learning Algorithms, 1–17. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-33-4528-7_1.
Texto completoWang, Huiwei, Huaqing Li y Bo Zhou. "Constrained Consensus of Multi-agent Systems with Time-Varying Topology". En Distributed Optimization, Game and Learning Algorithms, 19–37. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-33-4528-7_2.
Texto completoActas de conferencias sobre el tema "Distributed optimization and learning"
Patil, Aditya, Sanket Lodha, Sonal Deshmukh, Rupali S. Joshi, Vaishali Patil y Sudhir Chitnis. "Battery Optimization Using Machine Learning". En 2024 IEEE International Conference on Blockchain and Distributed Systems Security (ICBDS), 1–5. IEEE, 2024. https://doi.org/10.1109/icbds61829.2024.10837428.
Texto completoKhan, Malak Abid Ali, Luo Senlin, Hongbin Ma, Abdul Khalique Shaikh, Ahlam Almusharraf y Imran Khan Mirani. "Optimization of LoRa for Distributed Environments Based on Machine Learning". En 2024 IEEE Asia Pacific Conference on Wireless and Mobile (APWiMob), 137–42. IEEE, 2024. https://doi.org/10.1109/apwimob64015.2024.10792952.
Texto completoChao, Liangchen, Bo Zhang, Hengpeng Guo, Fangheng Ji y Junfeng Li. "UAV Swarm Collaborative Transmission Optimization for Machine Learning Tasks". En 2024 IEEE 30th International Conference on Parallel and Distributed Systems (ICPADS), 504–11. IEEE, 2024. http://dx.doi.org/10.1109/icpads63350.2024.00072.
Texto completoShamir, Ohad y Nathan Srebro. "Distributed stochastic optimization and learning". En 2014 52nd Annual Allerton Conference on Communication, Control, and Computing (Allerton). IEEE, 2014. http://dx.doi.org/10.1109/allerton.2014.7028543.
Texto completoHulse, Daniel, Brandon Gigous, Kagan Tumer, Christopher Hoyle y Irem Y. Tumer. "Towards a Distributed Multiagent Learning-Based Design Optimization Method". En ASME 2017 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/detc2017-68042.
Texto completoLi, Naihao, Jiaqi Wang, Xu Liu, Lanfeng Wang y Long Zhang. "Contrastive Learning-based Meta-Learning Sequential Recommendation". En 2024 International Conference on Distributed Computing and Optimization Techniques (ICDCOT). IEEE, 2024. http://dx.doi.org/10.1109/icdcot61034.2024.10515699.
Texto completoVaidya, Nitin H. "Security and Privacy for Distributed Optimization & Distributed Machine Learning". En PODC '21: ACM Symposium on Principles of Distributed Computing. New York, NY, USA: ACM, 2021. http://dx.doi.org/10.1145/3465084.3467485.
Texto completoLiao, Leonardo y Yongqiang Wu. "Distributed Polytope ARTMAP: A Vigilance-Free ART Network for Distributed Supervised Learning". En 2009 International Joint Conference on Computational Sciences and Optimization, CSO. IEEE, 2009. http://dx.doi.org/10.1109/cso.2009.63.
Texto completoWang, Shoujin, Fan Wang y Yu Zhang. "Learning Rate Decay Algorithm Based on Mutual Information in Deep Learning". En 2024 International Conference on Distributed Computing and Optimization Techniques (ICDCOT). IEEE, 2024. http://dx.doi.org/10.1109/icdcot61034.2024.10515368.
Texto completoAnand, Aditya, Lakshay Rastogi, Ansh Agarwaal y Shashank Bhardwaj. "Refraction-Learning Based Whale Optimization Algorithm with Opposition-Learning and Adaptive Parameter Optimization". En 2024 Third International Conference on Distributed Computing and Electrical Circuits and Electronics (ICDCECE). IEEE, 2024. http://dx.doi.org/10.1109/icdcece60827.2024.10548420.
Texto completoInformes sobre el tema "Distributed optimization and learning"
Stuckey, Peter y Toby Walsh. Learning within Optimization. Fort Belvoir, VA: Defense Technical Information Center, abril de 2013. http://dx.doi.org/10.21236/ada575367.
Texto completoNygard, Kendall E. Distributed Optimization in Aircraft Mission Scheduling. Fort Belvoir, VA: Defense Technical Information Center, mayo de 1995. http://dx.doi.org/10.21236/ada300064.
Texto completoMeyer, Robert R. Large-Scale Optimization Via Distributed Systems. Fort Belvoir, VA: Defense Technical Information Center, noviembre de 1989. http://dx.doi.org/10.21236/ada215136.
Texto completoShead, Timothy, Jonathan Berry, Cynthia Phillips y Jared Saia. Information-Theoretically Secure Distributed Machine Learning. Office of Scientific and Technical Information (OSTI), noviembre de 2019. http://dx.doi.org/10.2172/1763277.
Texto completoGraesser, Arthur C. y Robert A. Wisher. Question Generation as a Learning Multiplier in Distributed Learning Environments. Fort Belvoir, VA: Defense Technical Information Center, octubre de 2001. http://dx.doi.org/10.21236/ada399456.
Texto completoVoon, B. K. y M. A. Austin. Structural Optimization in a Distributed Computing Environment. Fort Belvoir, VA: Defense Technical Information Center, enero de 1991. http://dx.doi.org/10.21236/ada454846.
Texto completoHays, Robert T. Theoretical Foundation for Advanced Distributed Learning Research. Fort Belvoir, VA: Defense Technical Information Center, mayo de 2001. http://dx.doi.org/10.21236/ada385457.
Texto completoChen, J. S. J. Distributed-query optimization in fragmented data-base systems. Office of Scientific and Technical Information (OSTI), agosto de 1987. http://dx.doi.org/10.2172/7183881.
Texto completoNocedal, Jorge. Nonlinear Optimization Methods for Large-Scale Learning. Office of Scientific and Technical Information (OSTI), octubre de 2019. http://dx.doi.org/10.2172/1571768.
Texto completoLumsdaine, Andrew. Scalable Second Order Optimization for Machine Learning. Office of Scientific and Technical Information (OSTI), mayo de 2022. http://dx.doi.org/10.2172/1984057.
Texto completo