Literatura académica sobre el tema "Disordered photonic systems"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Disordered photonic systems".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Disordered photonic systems"
Sgrignuoli, Fabrizio, Giacomo Mazzamuto, Niccolò Caselli, Francesca Intonti, Francesco Saverio Cataliotti, Massimo Gurioli y Costanza Toninelli. "Necklace State Hallmark in Disordered 2D Photonic Systems". ACS Photonics 2, n.º 11 (28 de octubre de 2015): 1636–43. http://dx.doi.org/10.1021/acsphotonics.5b00422.
Texto completoWang, Hongfei, Xiujuan Zhang, Jinguo Hua, Dangyuan Lei, Minghui Lu y Yanfeng Chen. "Topological physics of non-Hermitian optics and photonics: a review". Journal of Optics 23, n.º 12 (25 de octubre de 2021): 123001. http://dx.doi.org/10.1088/2040-8986/ac2e15.
Texto completoGranchi, Nicoletta, Richard Spalding, Kris Stokkereit, Matteo Lodde, Andrea Fiore, Riccardo Sapienza, Francesca Intonti, Marian Florescu y Massimo Gurioli. "Engineering high Q/V photonic modes in correlated disordered systems". EPJ Web of Conferences 266 (2022): 05005. http://dx.doi.org/10.1051/epjconf/202226605005.
Texto completoDeGottardi, Wade y Mohammad Hafezi. "Stability of fractional quantum Hall states in disordered photonic systems". New Journal of Physics 19, n.º 11 (14 de noviembre de 2017): 115004. http://dx.doi.org/10.1088/1367-2630/aa89a5.
Texto completoCaselli, Niccolò, Francesca Intonti, Federico La China, Francesco Biccari, Francesco Riboli, Annamaria Gerardino, Lianhe Li et al. "Near-field speckle imaging of light localization in disordered photonic systems". Applied Physics Letters 110, n.º 8 (20 de febrero de 2017): 081102. http://dx.doi.org/10.1063/1.4976747.
Texto completoWang, Guang-Lei, Hong-Ya Xu y Ying-Cheng Lai. "Can a photonic thermalization gap arise in disordered non-Hermitian Hamiltonian systems?" EPL (Europhysics Letters) 125, n.º 3 (26 de febrero de 2019): 30003. http://dx.doi.org/10.1209/0295-5075/125/30003.
Texto completoSarma, Raktim, Abigail Pribisova, Bjorn Sumner y Jayson Briscoe. "Classification of Intensity Distributions of Transmission Eigenchannels of Disordered Nanophotonic Structures Using Machine Learning". Applied Sciences 12, n.º 13 (30 de junio de 2022): 6642. http://dx.doi.org/10.3390/app12136642.
Texto completoRicouvier, Joshua, Patrick Tabeling y Pavel Yazhgur. "Foam as a self-assembling amorphous photonic band gap material". Proceedings of the National Academy of Sciences 116, n.º 19 (24 de abril de 2019): 9202–7. http://dx.doi.org/10.1073/pnas.1820526116.
Texto completoBin Tarik, Farhan, Azadeh Famili, Yingjie Lao y Judson D. Ryckman. "Robust optical physical unclonable function using disordered photonic integrated circuits". Nanophotonics 9, n.º 9 (3 de julio de 2020): 2817–28. http://dx.doi.org/10.1515/nanoph-2020-0049.
Texto completoWang, Michelle, Cooper Doyle, Bryn Bell, Matthew J. Collins, Eric Magi, Benjamin J. Eggleton, Mordechai Segev y Andrea Blanco-Redondo. "Topologically protected entangled photonic states". Nanophotonics 8, n.º 8 (9 de mayo de 2019): 1327–35. http://dx.doi.org/10.1515/nanoph-2019-0058.
Texto completoTesis sobre el tema "Disordered photonic systems"
Hang, Zhihong. "Experimental investigation on the effect of disorder in metallo-photonic band gap system /". View abstract or full-text, 2004. http://library.ust.hk/cgi/db/thesis.pl?PHYS%202004%20HANG.
Texto completoSchneider, Michael Peter. "A theoretical framework for waveguide quantum electrodynamics and its application in disordered systems". Doctoral thesis, Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät, 2016. http://dx.doi.org/10.18452/17415.
Texto completoWaveguide quantum electrodynamics (waveguide QED) can be considered as a building block for many prospective technologies like quantum computing. A prototypical system consists of a two-level system (TLS) coupled to a one-dimensional waveguide. The waveguide is characterized by its dispersion relation and can also feature a band edge/slow-light regime. In this thesis we have presented a new theoretical framework for waveguide QED, based on quantum field theory. The framework provides the Green''s functions of the system in the single- and two-excitation sectors for an arbitrary dispersion relation. We have calculated the scattering matrix and the spectral density in both sectors. Furthermore, we have also represented the Green''s functions in the form of Feynman diagrams, from which we can identify the underlying physical processes. A special property of the system is that it behaves nonlinear in the case of two or more photons. This is rooted in the structure of the TLS, which can at most absorb one excitation. The nonlinearity leads to two effects: photon bunching and the efficient excitation of an atom-photon bound state. We have found both effects within our framework and we were able to assign them individual terms in the perturbation series of the Green''s function. Furthermore, we have used the Green''s function in space-time domain to propagate Gaussian one- and two-photon wavepackets. Here, we have identified the ratio of the pulsewidth and the spontaneous emission time as the parameter which governs both the scattering behavior of the photons and the maximal TLS excitation. Eventually, we have investigated the effects of disorder in the waveguide on the decay properties of the TLS. We have found here that the atom-photon bound state is stable for small disorder, but breaks down at sufficiently strong disorder. Furthermore, we have identified a special class of diagrams which render the system non-Markovian even for energies far away from the band edge.
Ruess, Frank Joachim Physics Faculty of Science UNSW. "Atomically controlled device fabrication using STM". Awarded by:University of New South Wales. Physics, 2006. http://handle.unsw.edu.au/1959.4/24855.
Texto completoCASELLI, NICCOLO'. "Imaging and engineering optical localized modes at the nanoscale". Doctoral thesis, 2015. http://hdl.handle.net/2158/1022507.
Texto completoBendix, Oliver. "Transport in nicht-hermiteschen niedrigdimensionalen Systemen". Doctoral thesis, 2011. http://hdl.handle.net/11858/00-1735-0000-0006-B542-6.
Texto completoLibros sobre el tema "Disordered photonic systems"
America, Optical Society of y Laser Institute of America, eds. Advances in optical imaging and photon migration: March 8-11, 1998, Sheraton World Resort Orlando, Orlando, Florida. Washington, DC: The Society, 1998.
Buscar texto completoChadwick, David, Alastair Compston, Michael Donaghy, Nicholas Fletcher, Robert Grant, David Hilton-Jones, Martin Rossor, Peter Rothwell y Neil Scolding. Investigations. Oxford University Press, 2011. http://dx.doi.org/10.1093/med/9780198569381.003.0100.
Texto completoCapítulos de libros sobre el tema "Disordered photonic systems"
van Rossum, M. C. W., Th M. Nieuwenhuizen, E. Hofstetter y M. Schreiber. "Band Tails in a Disordered System". En Photonic Band Gaps and Localization, 509–13. Boston, MA: Springer US, 1993. http://dx.doi.org/10.1007/978-1-4899-1606-8_40.
Texto completoJohansen, Villads Egede, Olimpia Domitilla Onelli, Lisa Maria Steiner y Silvia Vignolini. "Photonics in Nature: From Order to Disorder". En Biologically-Inspired Systems, 53–89. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-74144-4_3.
Texto completoFreilikher, Valentin. "1-D Disordered System with Absorption as a Model of Real Media of Propagation". En Photonic Band Gaps and Localization, 471–78. Boston, MA: Springer US, 1993. http://dx.doi.org/10.1007/978-1-4899-1606-8_36.
Texto completoWiel, W. G., T. H. Oosterkamp, S. Franceschi, C. J. P. M. Harmans y L. P. Kouwenhoven. "Photon Assisted Tunneling in Quantum Dots". En Strongly Correlated Fermions and Bosons in Low-Dimensional Disordered Systems, 43–68. Dordrecht: Springer Netherlands, 2002. http://dx.doi.org/10.1007/978-94-010-0530-2_3.
Texto completoMcGurn, Arthur R. "Disordered systems: site impurities and random media". En Introduction to Nonlinear Optics of Photonic Crystals and Metamaterials (Second Edition). IOP Publishing, 2021. http://dx.doi.org/10.1088/978-0-7503-3579-9ch10.
Texto completoBarlow, Richard J. "Lasers and flashlamps in the treatment of skin disorders". En Oxford Textbook of Plastic and Reconstructive Surgery, editado por Nigel Mercer y Mark Soldin, 1347—C12.3.S46. Oxford University PressOxford, 2021. http://dx.doi.org/10.1093/med/9780199682874.003.0175.
Texto completoKinoshita, S. y Y. Kanematsu. "Linear and Nonlinear Optical Spectroscopy of Molecules in Disordered Systems". En Advances in Multi-Photon Processes and Spectroscopy, 3–141. WORLD SCIENTIFIC, 1995. http://dx.doi.org/10.1142/9789812798459_0001.
Texto completoRobertson, Chelsea L., Steven M. Berman y Edythe D. London. "Molecular Imaging in Addictive Disorders". En Neurobiology of Mental Illness, editado por Antonello Bonci y Nora D. Volkow, 716–18. Oxford University Press, 2013. http://dx.doi.org/10.1093/med/9780199934959.003.0054.
Texto completoAli Raza Naqvi, Syed y Muhammad Babar Imran. "Single-Photon Emission Computed Tomography (SPECT) Radiopharmaceuticals". En Medical Isotopes. IntechOpen, 2021. http://dx.doi.org/10.5772/intechopen.93449.
Texto completoAli Raza Naqvi, Syed y Muhammad Babar Imran. "Single-Photon Emission Computed Tomography (SPECT) Radiopharmaceuticals". En Medical Isotopes. IntechOpen, 2021. http://dx.doi.org/10.5772/intechopen.93449.
Texto completoActas de conferencias sobre el tema "Disordered photonic systems"
Cerjan, Alexander, Sheng Huang, Mohan Wang, Kevin P. Chen y Mikael C. Rechtsman. "Thouless Pumping in Disordered Photonic Systems". En CLEO: QELS_Fundamental Science. Washington, D.C.: OSA, 2020. http://dx.doi.org/10.1364/cleo_qels.2020.fm1a.6.
Texto completoChurkin, Dmitry V., Ilya Vatnik, Alexey Tikan y Andrey Sukhorukov. "Localization in disordered potential in photonic lattice realized in time domain". En Laser Components, Systems, and Applications, editado por Lan Jiang, Shibin Jiang, Lijun Wang y Long Zhang. SPIE, 2017. http://dx.doi.org/10.1117/12.2285481.
Texto completoMoritake, Yuto, Takuo Tanaka y Masaya Notomi. "Fabrication and characterization of zig-zag chains with photonic topological edges states". En JSAP-OSA Joint Symposia. Washington, D.C.: Optica Publishing Group, 2019. http://dx.doi.org/10.1364/jsap.2019.18p_e208_3.
Texto completoDogariu, Aristide. "Optics and Photonics of Disordered Systems". En Frontiers in Optics. Washington, D.C.: OSA, 2013. http://dx.doi.org/10.1364/fio.2013.fm4c.6.
Texto completoMiyake, Hirokazu, Sabyasachi Bank, Wade DeGottardi, Edo Waks y Mohammad Hafezi. "Observation of Edge States in Nanoscale Topological Photonic Crystals". En JSAP-OSA Joint Symposia. Washington, D.C.: Optica Publishing Group, 2017. http://dx.doi.org/10.1364/jsap.2017.8a_a409_8.
Texto completoBhattacharjee, Paraj T., Netanel H. Lindner, Mikael C. Rechtsman y Gil Refael. "Disorder-induced Floquet Topological Insulators in Photonic Systems". En CLEO: QELS_Fundamental Science. Washington, D.C.: OSA, 2014. http://dx.doi.org/10.1364/cleo_qels.2014.fth3c.6.
Texto completoRohlig, David, Eduard Kuhn, Angela Thranhardt, Thomas Otto y Thomas Blaudeck. "The Role of Disorder in Elementary Photonic Components". En 2022 Smart Systems Integration (SSI). IEEE, 2022. http://dx.doi.org/10.1109/ssi56489.2022.9901424.
Texto completoZhu, J. X., P. M. Chaikin, Li Min, W. B. Russel, W. V. Meyer y Richard B. Rogers. "The Structure and Dynamics of Hard Sphere Colloidal Crystals under Micro-Gravity with Quasi-Elastic Light Scattering". En Photon Correlation and Scattering. Washington, D.C.: Optica Publishing Group, 1996. http://dx.doi.org/10.1364/pcs.1996.thd.1.
Texto completoLi, Yuan y Xiankai Sun. "Anisotropic Dirac cone and slow edge states in a photonic Floquet lattice". En CLEO: QELS_Fundamental Science. Washington, D.C.: Optica Publishing Group, 2022. http://dx.doi.org/10.1364/cleo_qels.2022.ftu1b.5.
Texto completoGentilini, Silvia y Claudio Conti. "Optomechanics of random media: Large scale massively-parallel analysis of optical pressure in disordered systems". En 2015 Photonics North. IEEE, 2015. http://dx.doi.org/10.1109/pn.2015.7292486.
Texto completo