Literatura académica sobre el tema "Dirichlet allocation"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Dirichlet allocation".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Dirichlet allocation"
Du, Lan, Wray Buntine, Huidong Jin y Changyou Chen. "Sequential latent Dirichlet allocation". Knowledge and Information Systems 31, n.º 3 (10 de junio de 2011): 475–503. http://dx.doi.org/10.1007/s10115-011-0425-1.
Texto completoSchwarz, Carlo. "Ldagibbs: A Command for Topic Modeling in Stata Using Latent Dirichlet Allocation". Stata Journal: Promoting communications on statistics and Stata 18, n.º 1 (marzo de 2018): 101–17. http://dx.doi.org/10.1177/1536867x1801800107.
Texto completoYoshida, Takahiro, Ryohei Hisano y Takaaki Ohnishi. "Gaussian hierarchical latent Dirichlet allocation: Bringing polysemy back". PLOS ONE 18, n.º 7 (12 de julio de 2023): e0288274. http://dx.doi.org/10.1371/journal.pone.0288274.
Texto completoArchambeau, Cedric, Balaji Lakshminarayanan y Guillaume Bouchard. "Latent IBP Compound Dirichlet Allocation". IEEE Transactions on Pattern Analysis and Machine Intelligence 37, n.º 2 (febrero de 2015): 321–33. http://dx.doi.org/10.1109/tpami.2014.2313122.
Texto completoPion-Tonachini, Luca, Scott Makeig y Ken Kreutz-Delgado. "Crowd labeling latent Dirichlet allocation". Knowledge and Information Systems 53, n.º 3 (19 de abril de 2017): 749–65. http://dx.doi.org/10.1007/s10115-017-1053-1.
Texto completoS.S., Ramyadharshni y Pabitha Dr.P. "Topic Categorization on Social Network Using Latent Dirichlet Allocation". Bonfring International Journal of Software Engineering and Soft Computing 8, n.º 2 (30 de abril de 2018): 16–20. http://dx.doi.org/10.9756/bijsesc.8390.
Texto completoSyed, Shaheen y Marco Spruit. "Exploring Symmetrical and Asymmetrical Dirichlet Priors for Latent Dirichlet Allocation". International Journal of Semantic Computing 12, n.º 03 (septiembre de 2018): 399–423. http://dx.doi.org/10.1142/s1793351x18400184.
Texto completoLi, Gen y Hazri Jamil. "Teacher professional learning community and interdisciplinary collaborative teaching path under the informationization basic education model". Yugoslav Journal of Operations Research, n.º 00 (2024): 29. http://dx.doi.org/10.2298/yjor2403029l.
Texto completoGarg, Mohit y Priya Rangra. "Bibliometric Analysis of Latent Dirichlet Allocation". DESIDOC Journal of Library & Information Technology 42, n.º 2 (28 de febrero de 2022): 105–13. http://dx.doi.org/10.14429/djlit.42.2.17307.
Texto completoChauhan, Uttam y Apurva Shah. "Topic Modeling Using Latent Dirichlet allocation". ACM Computing Surveys 54, n.º 7 (30 de septiembre de 2022): 1–35. http://dx.doi.org/10.1145/3462478.
Texto completoTesis sobre el tema "Dirichlet allocation"
Ponweiser, Martin. "Latent Dirichlet Allocation in R". WU Vienna University of Economics and Business, 2012. http://epub.wu.ac.at/3558/1/main.pdf.
Texto completoSeries: Theses / Institute for Statistics and Mathematics
Arnekvist, Isac y Ludvig Ericson. "Finding competitors using Latent Dirichlet Allocation". Thesis, KTH, Skolan för datavetenskap och kommunikation (CSC), 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-186386.
Texto completoDet finns ett intresse av att kunna identifiera affärskonkurrenter, men detta blir allt svårare på en ständigt växande och alltmer global marknad. Syftet med denna rapport är att undersöka om Latent Dirichlet Allocation (LDA) kan användas för att identifiera och rangordna konkurrenter. Detta genom att jämföra avstånden mellan LDA-representationerna av dessas företagsbeskrivningar. Effektiviteten av LDA i detta syfte jämfördes med den för bag-of-words samt slumpmässig ordning, detta med hjälp av några vanliga informationsteoretiska mått. Flera olika avståndsmått utvärderades för att bestämma vilken av dessa som bäst åstadkommer att konkurrerande företag hamnar nära varandra. I detta fall fanns Cosine similarity överträffa andra avståndsmått. Medan både LDA och bag-of-words konstaterades vara signifikant bättre än slumpmässig ordning så fanns att LDA presterar kvalitativt sämre än bag-of-words. Uträkning av avståndsmått var dock betydligt snabbare med LDA-representationer. Att omvandla webbinnehåll till LDA-representationer fångar dock vissa ospecifika likheter som inte nödvändigt beskriver konkurrenter. Det kan möjligen vara fördelaktigt att använda LDA-representationer ihop med någon ytterligare datakälla och/eller heuristik.
Choubey, Rahul. "Tag recommendation using Latent Dirichlet Allocation". Thesis, Kansas State University, 2011. http://hdl.handle.net/2097/9785.
Texto completoDepartment of Computing and Information Sciences
Doina Caragea
The vast amount of data present on the internet calls for ways to label and organize this data according to specific categories, in order to facilitate search and browsing activities. This can be easily accomplished by making use of folksonomies and user provided tags. However, it can be difficult for users to provide meaningful tags. Tag recommendation systems can guide the users towards informative tags for online resources such as websites, pictures, etc. The aim of this thesis is to build a system for recommending tags to URLs available through a bookmark sharing service, called BibSonomy. We assume that the URLs for which we recommend tags do not have any prior tags assigned to them. Two approaches are proposed to address the tagging problem, both of them based on Latent Dirichlet Allocation (LDA) Blei et al. [2003]. LDA is a generative and probabilistic topic model which aims to infer the hidden topical structure in a collection of documents. According to LDA, documents can be seen as mixtures of topics, while topics can be seen as mixtures of words (in our case, tags). The first approach that we propose, called topic words based approach, recommends the top words in the top topics representing a resource as tags for that particular resource. The second approach, called topic distance based approach, uses the tags of the most similar training resources (identified using the KL-divergence Kullback and Liebler [1951]) to recommend tags for a test untagged resource. The dataset used in this work was made available through the ECML/PKDD Discovery Challenge 2009. We construct the documents that are provided as input to LDA in two ways, thus producing two different datasets. In the first dataset, we use only the description and the tags (when available) corresponding to a URL. In the second dataset, we crawl the URL content and use it to construct the document. Experimental results show that the LDA approach is not very effective at recommending tags for new untagged resources. However, using the resource content gives better results than using the description only. Furthermore, the topic distance based approach is better than the topic words based approach, when only the descriptions are used to construct documents, while the topic words based approach works better when the contents are used to construct documents.
Risch, Johan. "Detecting Twitter topics using Latent Dirichlet Allocation". Thesis, Uppsala universitet, Institutionen för informationsteknologi, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-277260.
Texto completoLiu, Zelong. "High performance latent dirichlet allocation for text mining". Thesis, Brunel University, 2013. http://bura.brunel.ac.uk/handle/2438/7726.
Texto completoKulhanek, Raymond Daniel. "A Latent Dirichlet Allocation/N-gram Composite Language Model". Wright State University / OhioLINK, 2013. http://rave.ohiolink.edu/etdc/view?acc_num=wright1379520876.
Texto completoAnaya, Leticia H. "Comparing Latent Dirichlet Allocation and Latent Semantic Analysis as Classifiers". Thesis, University of North Texas, 2011. https://digital.library.unt.edu/ark:/67531/metadc103284/.
Texto completoJaradat, Shatha. "OLLDA: Dynamic and Scalable Topic Modelling for Twitter : AN ONLINE SUPERVISED LATENT DIRICHLET ALLOCATION ALGORITHM". Thesis, KTH, Skolan för informations- och kommunikationsteknik (ICT), 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-177535.
Texto completoTillhandahålla högkvalitativa ämnen slutsats i dagens stora och dynamiska korpusar, såsom Twitter, är en utmanande uppgift. Detta är särskilt utmanande med tanke på att innehållet i den här miljön innehåller korta texter och många förkortningar. Projektet föreslår en förbättring med en populär online ämnen modellering algoritm för Latent Dirichlet Tilldelning (LDA), genom att införliva tillsyn för att göra den lämplig för Twitter sammanhang. Denna förbättring motiveras av behovet av en enda algoritm som uppnår båda målen: analysera stora mängder av dokument, inklusive nya dokument som anländer i en bäck, och samtidigt uppnå hög kvalitet på ämnen "upptäckt i speciella fall miljöer, till exempel som Twitter. Den föreslagna algoritmen är en kombination av en online-algoritm för LDA och en övervakad variant av LDA - Labeled LDA. Prestanda och kvalitet av den föreslagna algoritmen jämförs med dessa två algoritmer. Resultaten visar att den föreslagna algoritmen har visat bättre prestanda och kvalitet i jämförelse med den övervakade varianten av LDA, och det uppnådde bättre resultat i fråga om kvalitet i jämförelse med den online-algoritmen. Dessa förbättringar gör vår algoritm till ett attraktivt alternativ när de tillämpas på dynamiska miljöer, som Twitter. En miljö för att analysera och märkning uppgifter är utformad för att förbereda dataset innan du utför experimenten. Möjliga användningsområden för den föreslagna algoritmen är tweets rekommendation och trender upptäckt.
Yalamanchili, Hima Bindu. "A Novel Approach For Cancer Characterization Using Latent Dirichlet Allocation and Disease-Specific Genomic Analysis". Wright State University / OhioLINK, 2018. http://rave.ohiolink.edu/etdc/view?acc_num=wright1527600876174758.
Texto completoSheikha, Hassan. "Text mining Twitter social media for Covid-19 : Comparing latent semantic analysis and latent Dirichlet allocation". Thesis, Högskolan i Gävle, Avdelningen för datavetenskap och samhällsbyggnad, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:hig:diva-32567.
Texto completoLibros sobre el tema "Dirichlet allocation"
Shi, Feng. Learn About Latent Dirichlet Allocation in R With Data From the News Articles Dataset (2016). 1 Oliver's Yard, 55 City Road, London EC1Y 1SP United Kingdom: SAGE Publications, Ltd., 2019. http://dx.doi.org/10.4135/9781526495693.
Texto completoShi, Feng. Learn About Latent Dirichlet Allocation in Python With Data From the News Articles Dataset (2016). 1 Oliver's Yard, 55 City Road, London EC1Y 1SP United Kingdom: SAGE Publications, Ltd., 2019. http://dx.doi.org/10.4135/9781526497727.
Texto completoAugmenting Latent Dirichlet Allocation and Rank Threshold Detection with Ontologies. CreateSpace Independent Publishing Platform, 2014.
Buscar texto completoJockers, Matthew L. Theme. University of Illinois Press, 2017. http://dx.doi.org/10.5406/illinois/9780252037528.003.0008.
Texto completoCapítulos de libros sobre el tema "Dirichlet allocation"
Li, Hang. "Latent Dirichlet Allocation". En Machine Learning Methods, 439–71. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-3917-6_20.
Texto completoTang, Yi-Kun, Xian-Ling Mao y Heyan Huang. "Labeled Phrase Latent Dirichlet Allocation". En Web Information Systems Engineering – WISE 2016, 525–36. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-48740-3_39.
Texto completoMoon, Gordon E., Israt Nisa, Aravind Sukumaran-Rajam, Bortik Bandyopadhyay, Srinivasan Parthasarathy y P. Sadayappan. "Parallel Latent Dirichlet Allocation on GPUs". En Lecture Notes in Computer Science, 259–72. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-93701-4_20.
Texto completoCalvo, Hiram, Ángel Hernández-Castañeda y Jorge García-Flores. "Author Identification Using Latent Dirichlet Allocation". En Computational Linguistics and Intelligent Text Processing, 303–12. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-77116-8_22.
Texto completoHao, Jing y Hongxi Wei. "Latent Dirichlet Allocation Based Image Retrieval". En Lecture Notes in Computer Science, 211–21. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-68699-8_17.
Texto completoMaanicshah, Kamal, Manar Amayri y Nizar Bouguila. "Interactive Generalized Dirichlet Mixture Allocation Model". En Lecture Notes in Computer Science, 33–42. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-23028-8_4.
Texto completoWheeler, Jordan M., Shiyu Wang y Allan S. Cohen. "Latent Dirichlet Allocation of Constructed Responses". En The Routledge International Handbook of Automated Essay Evaluation, 535–55. New York: Routledge, 2024. http://dx.doi.org/10.4324/9781003397618-31.
Texto completoRus, Vasile, Nobal Niraula y Rajendra Banjade. "Similarity Measures Based on Latent Dirichlet Allocation". En Computational Linguistics and Intelligent Text Processing, 459–70. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-37247-6_37.
Texto completoBíró, István y Jácint Szabó. "Latent Dirichlet Allocation for Automatic Document Categorization". En Machine Learning and Knowledge Discovery in Databases, 430–41. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-04174-7_28.
Texto completoLovato, Pietro, Manuele Bicego, Vittorio Murino y Alessandro Perina. "Robust Initialization for Learning Latent Dirichlet Allocation". En Similarity-Based Pattern Recognition, 117–32. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-24261-3_10.
Texto completoActas de conferencias sobre el tema "Dirichlet allocation"
Tahsin, Faiza, Hafsa Ennajari y Nizar Bouguila. "Author Dirichlet Multinomial Allocation Model with Generalized Distribution (ADMAGD)". En 2024 International Symposium on Networks, Computers and Communications (ISNCC), 1–7. IEEE, 2024. http://dx.doi.org/10.1109/isncc62547.2024.10758998.
Texto completoKoltcov, Sergei, Olessia Koltsova y Sergey Nikolenko. "Latent dirichlet allocation". En the 2014 ACM conference. New York, New York, USA: ACM Press, 2014. http://dx.doi.org/10.1145/2615569.2615680.
Texto completoChien, Jen-Tzung, Chao-Hsi Lee y Zheng-Hua Tan. "Dirichlet mixture allocation". En 2016 IEEE 26th International Workshop on Machine Learning for Signal Processing (MLSP). IEEE, 2016. http://dx.doi.org/10.1109/mlsp.2016.7738866.
Texto completoShen, Zhi-Yong, Jun Sun y Yi-Dong Shen. "Collective Latent Dirichlet Allocation". En 2008 Eighth IEEE International Conference on Data Mining (ICDM). IEEE, 2008. http://dx.doi.org/10.1109/icdm.2008.75.
Texto completoLi, Shuangyin, Guan Huang, Ruiyang Tan y Rong Pan. "Tag-Weighted Dirichlet Allocation". En 2013 IEEE International Conference on Data Mining (ICDM). IEEE, 2013. http://dx.doi.org/10.1109/icdm.2013.11.
Texto completoHsin, Wei-Cheng y Jen-Wei Huang. "Multi-dependent Latent Dirichlet Allocation". En 2017 Conference on Technologies and Applications of Artificial Intelligence (TAAI). IEEE, 2017. http://dx.doi.org/10.1109/taai.2017.51.
Texto completoKrestel, Ralf, Peter Fankhauser y Wolfgang Nejdl. "Latent dirichlet allocation for tag recommendation". En the third ACM conference. New York, New York, USA: ACM Press, 2009. http://dx.doi.org/10.1145/1639714.1639726.
Texto completoTan, Yimin y Zhijian Ou. "Topic-weak-correlated Latent Dirichlet allocation". En 2010 7th International Symposium on Chinese Spoken Language Processing (ISCSLP). IEEE, 2010. http://dx.doi.org/10.1109/iscslp.2010.5684906.
Texto completoXiang, Yingzhuo, Dongmei Yang y Jikun Yan. "The Auto Annotation Latent Dirichlet Allocation". En First International Conference on Information Sciences, Machinery, Materials and Energy. Paris, France: Atlantis Press, 2015. http://dx.doi.org/10.2991/icismme-15.2015.387.
Texto completoBhutada, Sunil, V. V. S. S. S. Balaram y Vishnu Vardhan Bulusu. "Latent Dirichlet Allocation based multilevel classification". En 2014 International Conference on Control, Instrumentation, Communication and Computational Technologies (ICCICCT). IEEE, 2014. http://dx.doi.org/10.1109/iccicct.2014.6993109.
Texto completoInformes sobre el tema "Dirichlet allocation"
Teh, Yee W., David Newman y Max Welling. A Collapsed Variational Bayesian Inference Algorithm for Latent Dirichlet Allocation. Fort Belvoir, VA: Defense Technical Information Center, septiembre de 2007. http://dx.doi.org/10.21236/ada629956.
Texto completoAntón Sarabia, Arturo, Santiago Bazdresch y Alejandra Lelo-de-Larrea. The Influence of Central Bank's Projections and Economic Narrative on Professional Forecasters' Expectations: Evidence from Mexico. Banco de México, diciembre de 2023. http://dx.doi.org/10.36095/banxico/di.2023.21.
Texto completoMoreno Pérez, Carlos y Marco Minozzo. “Making Text Talk”: The Minutes of the Central Bank of Brazil and the Real Economy. Madrid: Banco de España, noviembre de 2022. http://dx.doi.org/10.53479/23646.
Texto completoAlonso-Robisco, Andrés, José Manuel Carbó y José Manuel Carbó. Machine Learning methods in climate finance: a systematic review. Madrid: Banco de España, febrero de 2023. http://dx.doi.org/10.53479/29594.
Texto completo