Literatura académica sobre el tema "Direct and inverse-Problem solving"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Direct and inverse-Problem solving".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Direct and inverse-Problem solving"
Sorokin, S. B. "Direct method for solving the inverse coefficient problem". Sibirskii zhurnal industrial'noi matematiki 24, n.º 2 (18 de junio de 2021): 134–47. http://dx.doi.org/10.33048/sibjim.2021.24.211.
Texto completoNikitin, A. V., L. V. Mikhaylov, A. V. Mikhaylov, Yu L. Gobov, V. N. Kostin y Ya G. Smorodinskii. "Reconstruction of the shape of a flaw in ferromagnetic plate by solving inverse problem of magnetostatics and series of direct problems". Defektoskopiâ, n.º 9 (2 de octubre de 2024): 67–72. http://dx.doi.org/10.31857/s0130308224090086.
Texto completoXue, Qi Wen, Xiu Yun Du y Ga Ping Wang. "Solving the Inverse Heat Conduction Problem with Multi-Variables". Advanced Materials Research 168-170 (diciembre de 2010): 195–99. http://dx.doi.org/10.4028/www.scientific.net/amr.168-170.195.
Texto completoKravchenko, Vladislav V. y Lady Estefania Murcia-Lozano. "An Approach to Solving Direct and Inverse Scattering Problems for Non-Selfadjoint Schrödinger Operators on a Half-Line". Mathematics 11, n.º 16 (16 de agosto de 2023): 3544. http://dx.doi.org/10.3390/math11163544.
Texto completoAskerbekova, J. A. "NUMERICAL ALGORITHM FOR SOLVING THE CONTINUATION PROBLEM FOR THE ACOUSTIC EQUATION". BULLETIN Series of Physics & Mathematical Sciences 70, n.º 2 (30 de junio de 2020): 7–13. http://dx.doi.org/10.51889/2020-2.1728-7901.01.
Texto completoOyama, Eimei, Taro Maeda y Susumu Tachi. "A human system learning model for solving the inverse kinematics problem by direct inverse modeling". Systems and Computers in Japan 27, n.º 8 (1996): 53–68. http://dx.doi.org/10.1002/scj.4690270805.
Texto completoChmielowska, Agata, Rafał Brociek y Damian Słota. "Reconstructing the Heat Transfer Coefficient in the Inverse Fractional Stefan Problem". Fractal and Fractional 9, n.º 1 (16 de enero de 2025): 43. https://doi.org/10.3390/fractalfract9010043.
Texto completoTemirbekov, N. М., S. I. Kabanikhin, L. N. Тemirbekova y Zh E. Demeubayeva. "Gelfand-Levitan integral equation for solving coefficient inverse problem". Bulletin of the National Engineering Academy of the Republic of Kazakhstan 85, n.º 3 (15 de septiembre de 2022): 158–67. http://dx.doi.org/10.47533/2020.1606-146x.184.
Texto completoShishlenin, M. A., N. S. Novikov y D. V. Klyuchinskiy. "On the recovering of acoustic attenuation in 2D acoustic tomography". Journal of Physics: Conference Series 2099, n.º 1 (1 de noviembre de 2021): 012046. http://dx.doi.org/10.1088/1742-6596/2099/1/012046.
Texto completoDurdiev, D. K. y J. Z. Nuriddinov. "On investigation of the inverse problem for a parabolic integro-differential equation with a variable coefficient of thermal conductivity". Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki 30, n.º 4 (diciembre de 2020): 572–84. http://dx.doi.org/10.35634/vm200403.
Texto completoTesis sobre el tema "Direct and inverse-Problem solving"
Abdelaziz, Batoul. "Direct algorithms for solving some inverse source problems". Thesis, Compiègne, 2014. http://www.theses.fr/2014COMP1956/document.
Texto completoThis thesis deals with inverse source problems in 2 cases : stationary sources in 2D and 3D elliptic equations and a non-stationary source in a diffusion equation. the main form of sources considered are pointwise sources (monopoles, dipoles and multipolar sources) having compact support within a finite number of small subdomains modeling EEG/MEG problems and Bioluminescence Tomography (BLT) problems. The purpose o this thesis is mainly to propose robust identification methods that enable us to reconstruct the number, the intensity and the location of the sources. Direct algebraic methods are used to identify the stationary siurces and a quasi-algebraic method mixed with an optimieation method is employed to recover sources with time-variable intensities. Numerical results are shown to prove the robustness of our identification algorithms
Christofori, Pamela. "The effect of direct instruction math curriculum on higher-order problem solving". [Tampa, Fla.] : University of South Florida, 2005. http://purl.fcla.edu/fcla/etd/SFE0001287.
Texto completoLesnic, Daniel. "Boundary element methods for solving steady potential flow problems and direct and inverse unsteady heat conduction problems". Thesis, University of Leeds, 1995. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.404773.
Texto completoManoochehrnia, Pooyan. "Characterisatiοn οf viscοelastic films οn substrate by acοustic micrοscοpy. Direct and inverse prοblems". Electronic Thesis or Diss., Normandie, 2024. http://www.theses.fr/2024NORMLH38.
Texto completoIn the framework of this PhD thesis, the characterisation of the thick and thin films deposited on asubstrate has been done using acoustic microscopy via direct and inverse problem-solving algorithms.Namely the Strohm’s method is used for direct problem-solving while a variety of mathematical modelsincluding Debye series model (DSM), transmission line model (TLM) and spectral method using ratiobetween multiple reflections model (MRM) have been used to solve inverse-problem. A specificapplication of acoustic microscopy has been used consisting of mounting the plane-wave high frequency(50 MHz and 200MHz) transducers instead of use of the traditional focus transducers used for acousticimaging as well as using full-wave A-scan which could be well extended to bulk analysis of consecutivescans. Models have been validated experimentally by a thick film made of epoxy-resin with thicknessof about 100μm and a thin film made of polish of about 8μm. The characterised parameters includemechanical parameters (e.g. density and thickness) as well as viscoelastic parameters (e.g. acousticlongitudinal velocity and acoustic attenuation) and occasionally transducer phase-shift
Lopez, Lurdes. "HELPING AT-RISK STUDENTS SOLVE MATHEMATICAL WORD PROBLEMS THROUGH THE USE OF DIRECT INSTRUCTION AND PROBLEM SOLVING STRATEGIES". Master's thesis, University of Central Florida, 2008. http://digital.library.ucf.edu/cdm/ref/collection/ETD/id/3193.
Texto completoM.Ed.
Other
Graduate Studies;
K-8 Math and Science MEd
Lee, Jeanette W. "The effectiveness of a novel direct instructional approach on math word problem solving skills of elementary students with learning disabilities". The Ohio State University, 1992. http://rave.ohiolink.edu/etdc/view?acc_num=osu1298983286.
Texto completoLi, Xiaobei. "Instrumentation and inverse problem solving for impedance imaging /". Thesis, Connect to this title online; UW restricted, 2006. http://hdl.handle.net/1773/5973.
Texto completoKang, Sangwoo. "Direct sampling method in inverse electromagnetic scattering problem". Thesis, Université Paris-Saclay (ComUE), 2019. http://www.theses.fr/2019SACLS417/document.
Texto completoThe non-iterative imaging problem within the inverse electromagnetic scattering framework using the direct sampling method (DSM) is considered. Thanks to the combination of the asymptotic expression of the scattered near-field or far-field and of the small obstacle hypothesis the analytical expressions of the DSM indicator function are presented in various configurations such as 2D/3D configurations and/or mono-/multi-static configurations and/or limited-/full-view case and/or mono-/multi-frequency case. Once the analytical expression obtained, its structure is analyzed and improvements proposed. Our approach is validated using synthetic data and experimental ones when available. First, the mathematical structure of DSM at a fixed frequency in 2D various scattering problems is established allowing a theoretical analysis of its efficiency and limitations. To overcome the known limitations an alternative direct sampling method (DSMA) is proposed. Next, the multi-frequency case is investigated by introducing and analyzing the multi-frequency DSM (MDSM) and the multi-frequency DSMA (MDSMA).Finally, our approach is extended to 3D inverse electromagnetic scattering problems for which the choice of the polarization of the test dipole is a key parameter. Thanks to our analytical analysis it can be made based on the polarization of the incident field
MacNeil, Toinette. "An LP approach to solving the inverse problem of electrocardiography". Thesis, National Library of Canada = Bibliothèque nationale du Canada, 2000. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape3/PQDD_0021/MQ57220.pdf.
Texto completoHilal, Mohammed Azeez. "Domain decomposition like methods for solving an electrocardiography inverse problem". Thesis, Nantes, 2016. http://www.theses.fr/2016NANT4060.
Texto completoThe aim of the this thesis is to study an electrocardiography (ECG) problem, modeling the cardiac electrical activity by using the stationary bidomain model. Tow types of modeling are considered :The modeling based on direct mathematical model and the modeling based on an inverse Cauchy problem. In the first case, the direct problem is solved by using domain decomposition methods and the approximation by finite elements method. For the inverse Cauchy problem of ECG, it was reformulated into a fixed point problem. In the second case, the existence and uniqueness of fixed point based on the topological degree of Leray-Schauder is showed. Then, some regularizing and stable iterative algorithms based on the techniques of domain decomposition method was developed. Finally, the efficiency and the accurate of the obtained results was discussed
Libros sobre el tema "Direct and inverse-Problem solving"
Taler, Jan y Piotr Duda. Solving Direct and Inverse Heat Conduction Problems. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006. http://dx.doi.org/10.1007/978-3-540-33471-2.
Texto completoNowożyński, Krzysztof. Methods of solving a one-dimensional magnetotelluric inverse problem. Warszawa: Państwowe Wydawn. Nauk., 1987.
Buscar texto completoGilhooly, K. J. Thinking: Directed, undirected, and creative. 2a ed. London: Academic Press, 1988.
Buscar texto completoVoronin, Evgeniy, Aleksandr Chibunichev y Yuriy Blohinov. Reliability of solving inverse problems of analytical photogrammetry. ru: INFRA-M Academic Publishing LLC., 2023. http://dx.doi.org/10.12737/2010462.
Texto completoYi, Sŏk-chae. Saengae nŭngnyŏk chʻŭkchŏng togu kaebal yŏnʼgu: Ŭisa sotʻong nŭngnyŏk, munje haegyŏl nŭngnyŏk, chagi chudojŏk haksŭp nŭngnyŏk ŭl chungsim ŭro = A study on the development of life-skills : communication, problem solving, and self-directed learning. Sŏul-si: Hanʼguk Kyoyuk Kaebarwŏn, 2003.
Buscar texto completoT, Herman Gabor y Sabatier Pierre Célestin 1935-, eds. Basic methods of tomography and inverse problems: A set of lectures. Bristol: A. Hilger, 1987.
Buscar texto completoLasankin, Serey. Carbon neutralization of steelmaking, energy and cement industries. Silhouettes of the carbon-neutral industry. ru: INFRA-M Academic Publishing LLC., 2024. http://dx.doi.org/10.12737/2122427.
Texto completoKolesnichenko, Ol'ga. Theoretical and legal foundations for assessing and compensating for harm to health in the physical sense: rejection of the formula “cannot be assessed, cannot be compensated” in domestic civil law. ru: Publishing Center RIOR, 2024. http://dx.doi.org/10.29039/02141-5.
Texto completoFisher, Kimball. Leading self-directed work teams: A guide to developing new team leadership skills. New York: McGraw-Hill, 1993.
Buscar texto completoCapítulos de libros sobre el tema "Direct and inverse-Problem solving"
Hauptman, Herbert A. "The Phase Problem: A Problem in Constrained Global Optimization". En Direct Methods for Solving Macromolecular Structures, 381–88. Dordrecht: Springer Netherlands, 1998. http://dx.doi.org/10.1007/978-94-015-9093-8_33.
Texto completoWoolfson, Michael M. "Random Approaches to the Phase Problem". En Direct Methods of Solving Crystal Structures, 203–13. Boston, MA: Springer US, 1991. http://dx.doi.org/10.1007/978-1-4899-3692-9_20.
Texto completoHauptman, Herbert A. "The Phase Problem of X-Ray Crystallography: Overview". En Direct Methods for Solving Macromolecular Structures, 3–10. Dordrecht: Springer Netherlands, 1998. http://dx.doi.org/10.1007/978-94-015-9093-8_1.
Texto completoSayre, David. "Note on “Superlarge” Structures and Their Phase Problem". En Direct Methods of Solving Crystal Structures, 353–56. Boston, MA: Springer US, 1991. http://dx.doi.org/10.1007/978-1-4899-3692-9_33.
Texto completoHeidrich-Meisner, Verena y Christian Igel. "Evolution Strategies for Direct Policy Search". En Parallel Problem Solving from Nature – PPSN X, 428–37. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008. http://dx.doi.org/10.1007/978-3-540-87700-4_43.
Texto completoNovotny, Antonio André. "A New Non-Iterative Reconstruction Method for Solving a Class of Inverse Problems". En Fundamental Concepts and Models for the Direct Problem, 1007–23. Brasilia, DF, Brazil: Biblioteca Central da Universidade de Brasilia, 2022. http://dx.doi.org/10.4322/978-65-86503-83-8.c25.
Texto completoGiacovazzo, C., L. Manna y D. Siliqi. "Direct Methods and Molecular Replacement Techniques: The Translation Problem". En Direct Methods for Solving Macromolecular Structures, 487–97. Dordrecht: Springer Netherlands, 1998. http://dx.doi.org/10.1007/978-94-015-9093-8_46.
Texto completoHughes, Evan J. "Many Objective Optimisation: Direct Objective Boundary Identification". En Parallel Problem Solving from Nature – PPSN X, 733–42. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008. http://dx.doi.org/10.1007/978-3-540-87700-4_73.
Texto completoLunin, V. Y. "The Likelihood Based Choice of Priors in Statistical Approaches to the Phase Problem". En Direct Methods for Solving Macromolecular Structures, 451–54. Dordrecht: Springer Netherlands, 1998. http://dx.doi.org/10.1007/978-94-015-9093-8_40.
Texto completoTitarenko, Sofya S., Igor M. Kulikov, Igor G. Chernykh, Maxim A. Shishlenin, Olga I. Krivorot’ko, Dmitry A. Voronov y Mark Hildyard. "Multilevel Parallelization: Grid Methods for Solving Direct and Inverse Problems". En Communications in Computer and Information Science, 118–31. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-55669-7_10.
Texto completoActas de conferencias sobre el tema "Direct and inverse-Problem solving"
Vovk, Serhii y Valentyn Borulko. "Solving Linear Inverse Problems via Criterion of Minimum Extent". En 2024 IEEE 29th International Seminar/Workshop on Direct and Inverse Problems of Electromagnetic and Acoustic Wave Theory (DIPED), 61–66. IEEE, 2024. http://dx.doi.org/10.1109/diped63529.2024.10706177.
Texto completoSavenko, Petro. "Cauchy’s Generalized Problem in Solving a Nonlinear Three-parameter Spectral Problem". En 2020 IEEE XXVth International Seminar/Workshop Direct and Inverse Problems of Electromagnetic and Acoustic Wave Theory (DIPED). IEEE, 2020. http://dx.doi.org/10.1109/diped49797.2020.9273364.
Texto completoAlexin, S. G. y O. O. Drobakhin. "Inverse problem solving for layered dielectric structure using Newton-Kantorovich iterative scheme with increased accuracy". En 2009 International Seminar/Workshop on Direct and Inverse Problems of Electromagnetic and Acoustic Wave Theory (DIPED 2009). IEEE, 2009. http://dx.doi.org/10.1109/diped.2009.5307276.
Texto completoXu, Kaida, Yonghong Zhang, Linli Xie y Yong Fan. "A broad W-band detector utilizing zero-bias direct detection circuitry". En 2011 International Conference on Computational Problem-Solving (ICCP). IEEE, 2011. http://dx.doi.org/10.1109/iccps.2011.6092273.
Texto completoSavenko, P., M. Tkach y L. Protsakh. "Implicit Function Method in Solving of Nonlinear Two-Dimensional Spectral Problem". En XIth International Seminar/Workshop on Direct and Inverse Problems of Electromagnetic Acoustic Wave Theory. IEEE, 2006. http://dx.doi.org/10.1109/diped.2006.314317.
Texto completoPotapov, A. P. "Horizontal Well Electric Logging Data Interpretation on the Basis of Direct and Inverse Problem Solving". En Saint Petersburg 2010. Netherlands: EAGE Publications BV, 2010. http://dx.doi.org/10.3997/2214-4609.20145460.
Texto completoMarinenko, A. V. "DiInSo software package for solving direct and inverse problems of electrotomography in non-typical problem definition". En Engineering and Mining Geophysics 2020. European Association of Geoscientists & Engineers, 2020. http://dx.doi.org/10.3997/2214-4609.202051125.
Texto completoAbboudi, S., E. A. Artioukhine y H. Riad. "Estimation of Transient Boundary Conditions in a Multimaterial: Computational and Experimental Analysis". En ASME 1998 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 1998. http://dx.doi.org/10.1115/imece1998-0735.
Texto completoAndriychuk, M. I. y Y. F. Kuleshnyk. "Solving the electromagnetic wave scattering problem by integral equation method". En 2017 XXIInd International Seminar/Workshop on Direct and Inverse Problems of Electromagnetic and Acoustic Wave Theory (DIPED). IEEE, 2017. http://dx.doi.org/10.1109/diped.2017.8100610.
Texto completoKhardikov, Vyacheslav V., Ekaterina O. Yarko y Sergey L. Prosvirnin. "Fast Algorithm for Solving of the Light Diffraction Problem on Planar Periodic Structures". En 2007 XIIth International Seminar/Workshop on Direct and Inverse Problems of Electromagnetic and Acoustic Wave Theory. IEEE, 2007. http://dx.doi.org/10.1109/diped.2007.4373578.
Texto completoInformes sobre el tema "Direct and inverse-Problem solving"
Wald, Joseph K. Solving the 'Inverse' Problem in Terrain Modeling. Fort Belvoir, VA: Defense Technical Information Center, octubre de 1994. http://dx.doi.org/10.21236/ada285860.
Texto completoOsipov, G. S. Methodological basis for solving the inverse problem for multi-stage fuzzy relational equations. Сахалинский Государственный Университет, 2018. http://dx.doi.org/10.18411/olimp-2018-10.
Texto completoArmstrong, Jerawan C. y Jeffrey A. Favorite. Applications of Mesh Adaptive Direct Search Algorithms to Solve Inverse Transport Problem: Unknown Interface Location. Office of Scientific and Technical Information (OSTI), septiembre de 2013. http://dx.doi.org/10.2172/1095220.
Texto completoGosnell, Greer, John List y Robert Metcalfe. A New Approach to an Age-Old Problem: Solving Externalities by Incenting Workers Directly. Cambridge, MA: National Bureau of Economic Research, junio de 2016. http://dx.doi.org/10.3386/w22316.
Texto completoDopfer, Jaqui. Öffentlichkeitsbeteiligung bei diskursiven Konfliktlösungsverfahren auf regionaler Ebene. Potentielle Ansätze zur Nutzung von Risikokommunikation im Rahmen von e-Government. Sonderforschungsgruppe Institutionenanalyse, 2003. http://dx.doi.org/10.46850/sofia.3933795605.
Texto completoShifrin, Kusiel S. y Ilin G. Zolotov. The Determination of Macro- and Microphysical Characteristics of Aerosol Spatial Inhomogeneities in the Lower Part of the Marine Atmospheric Boundary Layer from the Backscattered Lidar Signal (the Direct and Inverse Problem). Fort Belvoir, VA: Defense Technical Information Center, enero de 2001. http://dx.doi.org/10.21236/ada390607.
Texto completoChang, Michael Alan, Alejandra Magana, Bedrich Benes, Dominic Kao y Judith Fusco. Driving Interdisciplinary Collaboration through Adapted Conjecture Mapping: A Case Study with the PECAS Mediator. Digital Promise, mayo de 2022. http://dx.doi.org/10.51388/20.500.12265/156.
Texto completoZacamy, Jenna y Jeremy Roschelle. Navigating the Tensions: How Could Equity-relevant Research Also Be Agile, Open, and Scalable? Digital Promise, agosto de 2022. http://dx.doi.org/10.51388/20.500.12265/159.
Texto completoINVERSION METHOD OF UNCERTAIN PARAMETERS FOR TRUSS STRUCTURES BASED ON GRAPH NEURAL NETWORKS. The Hong Kong Institute of Steel Construction, diciembre de 2023. http://dx.doi.org/10.18057/ijasc.2023.19.4.5.
Texto completo