Literatura académica sobre el tema "Dirac nodal lines"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Dirac nodal lines".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Dirac nodal lines"
Fu, B. B., C. J. Yi, T. T. Zhang, M. Caputo, J. Z. Ma, X. Gao, B. Q. Lv et al. "Dirac nodal surfaces and nodal lines in ZrSiS". Science Advances 5, n.º 5 (mayo de 2019): eaau6459. http://dx.doi.org/10.1126/sciadv.aau6459.
Texto completoShao, Yinming, Zhiyuan Sun, Ying Wang, Chenchao Xu, Raman Sankar, Alexander J. Breindel, Chao Cao et al. "Optical signatures of Dirac nodal lines in NbAs2". Proceedings of the National Academy of Sciences 116, n.º 4 (17 de diciembre de 2018): 1168–73. http://dx.doi.org/10.1073/pnas.1809631115.
Texto completoZhou, Biao, Shoji Ishibashi, Tatsuru Ishii, Takahiko Sekine, Ryosuke Takehara, Kazuya Miyagawa, Kazushi Kanoda, Eiji Nishibori y Akiko Kobayashi. "Single-component molecular conductor [Pt(dmdt)2]—a three-dimensional ambient-pressure molecular Dirac electron system". Chemical Communications 55, n.º 23 (2019): 3327–30. http://dx.doi.org/10.1039/c9cc00218a.
Texto completoZou, Z. C., P. Zhou, Z. S. Ma y L. Z. Sun. "Strong anisotropic nodal lines in the TiBe family". Physical Chemistry Chemical Physics 21, n.º 16 (2019): 8402–7. http://dx.doi.org/10.1039/c9cp00508k.
Texto completoZhang, Honghong, Yuee Xie, Zhongwei Zhang, Chengyong Zhong, Yafei Li, Zhongfang Chen y Yuanping Chen. "Dirac Nodal Lines and Tilted Semi-Dirac Cones Coexisting in a Striped Boron Sheet". Journal of Physical Chemistry Letters 8, n.º 8 (3 de abril de 2017): 1707–13. http://dx.doi.org/10.1021/acs.jpclett.7b00452.
Texto completoAraki, Yasufumi, Jin Watanabe y Kentaro Nomura. "Nodal Lines and Boundary Modes in Topological Dirac Semimetals with Magnetism". Journal of the Physical Society of Japan 90, n.º 9 (15 de septiembre de 2021): 094702. http://dx.doi.org/10.7566/jpsj.90.094702.
Texto completoCheng, Zhengwang, Zhilong Hu, Shaojian Li, Xinguo Ma, Zhifeng Liu, Mei Wang, Jing He et al. "Searching for a promising topological Dirac nodal-line semimetal by angle resolved photoemission spectroscopy". New Journal of Physics 23, n.º 12 (1 de diciembre de 2021): 123026. http://dx.doi.org/10.1088/1367-2630/ac3d51.
Texto completoRosmus, Marcin, Natalia Olszowska, Zbigniew Bukowski, Paweł Starowicz, Przemysław Piekarz y Andrzej Ptok. "Electronic Band Structure and Surface States in Dirac Semimetal LaAgSb2". Materials 15, n.º 20 (14 de octubre de 2022): 7168. http://dx.doi.org/10.3390/ma15207168.
Texto completoWu, Rongting, Ze‐Bin Wu y Ivan Božović. "2D Mg‐Cu Intermetallic Compounds with Nontrivial Band Topology and Dirac Nodal Lines". Advanced Electronic Materials 8, n.º 3 (23 de diciembre de 2021): 2100927. http://dx.doi.org/10.1002/aelm.202100927.
Texto completoSun, Yi, Licheng Wang, Xiaoyan Li, Xiaojing Yao, Xiaokang Xu, Tianxia Guo, Ailei He, Bing Wang, Yongjun Liu y Xiuyun Zhang. "TM2B3 monolayers: Intrinsic anti-ferromagnetism and Dirac nodal line semimetal". Applied Physics Letters 121, n.º 18 (31 de octubre de 2022): 183103. http://dx.doi.org/10.1063/5.0113408.
Texto completoTesis sobre el tema "Dirac nodal lines"
Cameau, Mathis. "An experimental approach to the realization and characterization of the two-dimensional Dirac nodal line materials Cu2Si and Cu2Ge. Influence of the substrate and of Pb deposition on the electronic band structure". Electronic Thesis or Diss., Sorbonne université, 2022. http://www.theses.fr/2022SORUS075.
Texto completoThe realization of new two-dimensional materials is a booming field of condensed matter, at once for the fundamental aspects, with the exotic properties emerging from the reduced dimensionality, and for the potential technological applications, with promises such as dissipationless currents and 2D heterostructures outperforming the current silicon-based technology at a fraction of the size. In this work, we took an experimental approach to the realization and characterization of materials predicted to host Dirac nodal lines (DNLs), which despite many theoretical predictions have seen few experimental realizations reported so far. These materials belong to the recently evidenced class of topological semimetals, whose specificity is a symmetry-protected band crossing of the valence and conduction bands along a line in momentum space, with linear dispersion. As a first step, we focused on Cu2Si, the first 2D material in which DNLs have been evidenced when prepared on a Cu(111) substrate. After successfully reproducing existing results, we showed using ARPES and XPS that contrary to expectations, the DNLs were preserved after deposition of Pb on the surface without any gap, and that a band splitting occurred. We followed by the investigation of Cu2Si/Si(111), and found that despite a strongly related atomic structure, the Si(111) substrate interacts strongly enough with the out-of-plane orbitals of the Cu2Si layer to prevent the existence of the nodal lines. We then looked at the 2D Cu2Ge system, predicted to host DNL, and attempted to synthesize it by depositing Ge on Cu(111). By combining our LEED, XPS and ARPES results we found that all measurements matched closely what was expected from a free-standing Cu2Ge monolayer, showing the almost complete absence of interactions between the Cu(111) substrate and the surface Cu2Ge layer grown on it. This is the first reported experimental realization of the two-dimensional Dirac nodal line semimetal Cu2Ge. In a mirroring study, we deposited Cu on Ge(111) and observed a dissimilar band structure. Helped by STM, we explained those differences by a different atomic structure, and by a strongly interacting substrate. We highlight through this work the influence of the substrate, whether metallic or semiconductor, on the electronic properties of 2D DNL systems
Actas de conferencias sobre el tema "Dirac nodal lines"
Gladstein Gladstone, Ran A. y Gennady Shvets. "A novel photonic structure with a nodal line of Dirac cones, and a photonic topological insulator that emerges from it". En CLEO: Applications and Technology. Washington, D.C.: OSA, 2018. http://dx.doi.org/10.1364/cleo_at.2018.jw2a.114.
Texto completo