Literatura académica sobre el tema "Dirac and Weyl fermions"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Dirac and Weyl fermions".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Dirac and Weyl fermions"
Ma, Tian-Chi, Jing-Nan Hu, Yuan Chen, Lei Shao, Xian-Ru Hu y Jian-Bo Deng. "Coexistence of type-II and type-IV Dirac fermions in SrAgBi". Modern Physics Letters B 35, n.º 11 (9 de febrero de 2021): 2150181. http://dx.doi.org/10.1142/s0217984921501815.
Texto completoPal, Palash B. "Dirac, Majorana, and Weyl fermions". American Journal of Physics 79, n.º 5 (mayo de 2011): 485–98. http://dx.doi.org/10.1119/1.3549729.
Texto completoALONSO, J. L., J. L. CORTÉS y E. RIVAS. "WEYL FERMION FUNCTIONAL INTEGRAL AND TWO-DIMENSIONAL GAUGE THEORIES". International Journal of Modern Physics A 05, n.º 14 (20 de julio de 1990): 2839–51. http://dx.doi.org/10.1142/s0217751x90001331.
Texto completoHuang, Silu, Jisun Kim, W. A. Shelton, E. W. Plummer y Rongying Jin. "Nontrivial Berry phase in magnetic BaMnSb2 semimetal". Proceedings of the National Academy of Sciences 114, n.º 24 (24 de mayo de 2017): 6256–61. http://dx.doi.org/10.1073/pnas.1706657114.
Texto completoBonora, Loriano, Roberto Soldati y Stav Zalel. "Dirac, Majorana, Weyl in 4D". Universe 6, n.º 8 (4 de agosto de 2020): 111. http://dx.doi.org/10.3390/universe6080111.
Texto completoPandey, Mahul y Sachindeo Vaidya. "Yang–Mills matrix mechanics and quantum phases". International Journal of Geometric Methods in Modern Physics 14, n.º 08 (11 de mayo de 2017): 1740009. http://dx.doi.org/10.1142/s0219887817400096.
Texto completoChen, Xiaomei y Rui Zhu. "Quantum Pumping with Adiabatically Modulated Barriers in Three-Band Pseudospin-1 Dirac–Weyl Systems". Entropy 21, n.º 2 (22 de febrero de 2019): 209. http://dx.doi.org/10.3390/e21020209.
Texto completoHARADA, KOJI. "EQUIVALENCE BETWEEN THE WESS-ZUMINO-WITTEN MODEL AND TWO CHIRAL BOSONS". International Journal of Modern Physics A 06, n.º 19 (10 de agosto de 1991): 3399–418. http://dx.doi.org/10.1142/s0217751x91001659.
Texto completoReis, João Alfíeres Andrade de Simões dos y Marco Schreck. "Formal Developments for Lorentz-Violating Dirac Fermions and Neutrinos". Symmetry 11, n.º 10 (24 de septiembre de 2019): 1197. http://dx.doi.org/10.3390/sym11101197.
Texto completoGao, Lan-Lan y Xu-Guang Huang. "Chiral Anomaly in Non-Relativistic Systems: Berry Curvature and Chiral Kinetic Theory". Chinese Physics Letters 39, n.º 2 (1 de febrero de 2022): 021101. http://dx.doi.org/10.1088/0256-307x/39/2/021101.
Texto completoTesis sobre el tema "Dirac and Weyl fermions"
Krizman, Gauthier. "Étude magnéto-optique des transitions de phase topologique dans les alliages Pb₁₋ₓSnₓSe et leurs hétérostructures". Electronic Thesis or Diss., Université Paris sciences et lettres, 2020. http://www.theses.fr/2020UPSLE019.
Texto completoThis thesis deals with topological phases in Pb₁₋ₓSnₓSe alloys and their heterostructures. The topological and electronic properties of Pb₁₋ₓSnₓSe are characterized by using magneto-spectroscopy and numerous external and internal knobs like chemical composition, temperature, strain or magnetic field. The heterostructures are investigated to experimentally reach the topological interface states. A hybridization engineering of these topological interface states is demonstrated in both quantum wells and superlattices. The effect of a magnetic doping is also investigated. The great versatility of the Pb₁₋ₓSnₓSe-based system paves the way for the observation of numerous pseudo-relativistic phases such as quantum spin Hall effect, quantum anomalous Hall effect or Weyl fermions, …
Broccoli, Matteo. "On the trace anomaly of a Weyl fermion in a gauge background". Master's thesis, Alma Mater Studiorum - Università di Bologna, 2018. http://amslaurea.unibo.it/16408/.
Texto completoAmbrus, Victor E. "Dirac fermions on rotating space-times". Thesis, University of Sheffield, 2014. http://etheses.whiterose.ac.uk/7527/.
Texto completoFrenzel, Alex J. "Terahertz Electrodynamics of Dirac Fermions in Graphene". Thesis, Harvard University, 2015. http://nrs.harvard.edu/urn-3:HUL.InstRepos:17467397.
Texto completoPhysics
Bhaseen, Miraculous Joseph. "Logarithmic conformal field theories of disordered Dirac fermions". Thesis, University of Oxford, 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.393358.
Texto completoKhalil, Lama. "Ultrafast study of Dirac fermions in topological insulators". Thesis, Université Paris-Saclay (ComUE), 2018. http://www.theses.fr/2018SACLS344/document.
Texto completoThis thesis presents an experimental study of the electronic properties of two topological materials, namely, the irradiated three-dimensional topological insulator Bi₂Te₃ and the natural topological superlattice phase Sb₂Te. Both systems were investigated by techniques based on photoemission spectroscopy. The Bi₂Te₃ compounds have been irradiated by high-energy electron beams. Irradiation with electron beams is a very promising approach to realize materials that are really insulating in the bulk, in order to emphasize the quantum transport in the protected surface states. By studying a series of samples of Bi₂Te₃ using time- and angle-resolved photoemission spectroscopy (trARPES) we show that, while the topological properties of the Dirac surface states are preserved after electron irradiation, their ultrafast relaxation dynamics are very sensitive to the related modifications of the bulk properties. Furthermore, we have studied the occupied and unoccupied electronic band structure of Sb₂Te. Using scanning photoemission microscopy (SPEM), we have consistently found various nonequivalent regions on the same surface after cleaving several Sb₂Te single crystals. We were able to identify three distinct terminations characterized by different Sb/Te surface stoichiometric ratios and with clear differences in their band structure. For the dominating Te-rich termination, we also provided a direct observation of the excited electronic states and of their relaxation dynamics by means of trARPES. Our results clearly indicate that the surface electronic structure is strongly affected by the bulk properties of the superlattice. Therefore, for both systems, we show that the surface electronic structure is absolutely connected to the bulk properties
Bocquet, Marc. "Chaînes de Spins, Fermions de Dirac, et Systèmes Désordonnés". Phd thesis, Ecole Polytechnique X, 2000. http://tel.archives-ouvertes.fr/tel-00001560.
Texto completoSteiner, Margit Susanne. "Random Dirac fermions and localisation phenomena in one dimension". Thesis, Imperial College London, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.325365.
Texto completode, Coster George. "Effective Soft-Mode Theory of Strongly Interacting Fermions in Dirac Semimetals". Thesis, University of Oregon, 2019. http://hdl.handle.net/1794/24235.
Texto completo2020-01-11
Mizobata, William Nobuhiro. "Interação entre impurezas enterradas em um semimetal de Weyl : caso magnético /". Ilha Solteira, 2019. http://hdl.handle.net/11449/181343.
Texto completoResumo: Investigamos teoricamente um sistema composto por duas impurezas afastadas e enterradas em um semimetal de Weyl. Analisamos a densidade de estados local para duas situações: com simetrias de reversão temporal e inversão preservadas e; simetria de reversão temporal quebrada e inversão preservada. Na situação em que as duas simetrias são preservadas, o Hamiltoniano descreve um semimetal de Dirac. Sendo assim, verificamos a densidade de estados local em dois pontos diferentes do semimetal de Dirac e os orbitais moleculares formado pelas impurezas. É possível observar que em alguns pontos, a densidade de estados total, que pode ser obtido experimentalmente via espectroscopia de varredura por tunelamento, há a presença de apenas dois picos, enquanto que em outro ponto há a presença de quatro picos. Sendo assim, a presença de dois picos nos leva a crer que não há interação entre as impurezas, entretanto, em outro ponto que contém quatro picos em sua densidade de estados, mostra que há interação entre as impurezas. Analisamos os orbitais moleculares realizando uma topografa espacial da densidade de estados e é possível observar estados ligante e antiligante entre as impurezas com orbitais s. A segunda situação, com a quebra de simetria de reversão temporal e simetria de inversão preservada, temos um semimetal de Weyl com as bandas de energias separadas no espaço dos momentos e com energias degeneradas. Verificamos na densidade de estados local, uma magnetização das impurezas devido ... (Resumo completo, clicar acesso eletrônico abaixo)
Abstract: We investigate theoretically the setup composed by two distant impurities and burried in Weyl semimetal. We analyze a local density of states for two situations: with time reversal symmetry and inversion symmetry preserved and; time reversal symmetry broken and inversion symmetry preserved. In the situation that the two symmetries are preserved, the Hamiltonian describes a Dirac semimetal. Therefore, we verified the local density of states in two different points of Dirac semimetal and the molecular orbital formed by the impurities. It is possible to observe that in some points, the total density of states, which can be obtained experimentally via scanning tunneling microscope, there is the presence of just two peaks, while that in another point there is the presence of four peaks. Therefore, the presence of two peaks leads us to belive that there is no interaction between impurities, however, in the another point that contain four peaks in the density of states, show that there is interaction between the impurities. We analyze the molecular orbital realizing a spacial topography of density of states and it is possible to observe bonding and antibonding states between impurities with s orbital. The second situation, with the time reversal symmetry broken and inversion symmetry preserved, we have a Weyl semimetal with separated energy bands in momentum space and degenerate energy. We verified in the local density of states, a magnetization of the impurities due to the time rev... (Complete abstract click electronic access below)
Mestre
Libros sobre el tema "Dirac and Weyl fermions"
Israelit, Mark. The Weyl-Dirac theory and our universe. Commack, N.Y: Nova Science Publishers, 1999.
Buscar texto completoKachelriess, Michael. Fermions and the Dirac equation. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198802877.003.0008.
Texto completoElectronic Properties of Dirac and Weyl Semimetals. World Scientific Publishing Co Pte Ltd, 2021.
Buscar texto completoWurm, Jurgen. Dirac Fermions in Graphene Nanostructures: Edge Effects on Spectral Density and Quantum Transport. Universitatsverlag Regensburg, 2011.
Buscar texto completoBaulieu, Laurent, John Iliopoulos y Roland Sénéor. Towards a Relativistic Quantum Mechanics. Oxford University Press, 2017. http://dx.doi.org/10.1093/oso/9780198788393.003.0007.
Texto completoZirnbauer, Martin R. Symmetry classes. Editado por Gernot Akemann, Jinho Baik y Philippe Di Francesco. Oxford University Press, 2018. http://dx.doi.org/10.1093/oxfordhb/9780198744191.013.3.
Texto completoKübler, Jürgen. Theory of Itinerant Electron Magnetism, 2nd Edition. 2a ed. Oxford University Press, 2021. http://dx.doi.org/10.1093/oso/9780192895639.001.0001.
Texto completoCapítulos de libros sobre el tema "Dirac and Weyl fermions"
Pronin, Artem V. "Dirac and Weyl Semimetals". En Springer Series in Solid-State Sciences, 45–81. Cham: Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-35637-7_3.
Texto completoShen, Shun-Qing. "Topological Dirac and Weyl Semimetals". En Springer Series in Solid-State Sciences, 207–29. Singapore: Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-4606-3_11.
Texto completoWolschin, Georg. "Dirac-Neutrinos: Die Weyl-Gleichung". En Relativistische Quantenmechanik, 101–9. Berlin, Heidelberg: Springer Berlin Heidelberg, 2021. http://dx.doi.org/10.1007/978-3-662-64387-7_8.
Texto completoWolschin, Georg. "Dirac-Neutrinos: Die Weyl-Gleichung". En Relativistische Quantenmechanik, 97–105. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-662-47108-1_8.
Texto completoKobayashi, Takayoshi. "Dirac Fermions Near the Dirac Point in Topological Insulators". En Ultrashort Pulse Lasers and Ultrafast Phenomena, 487–94. Boca Raton: CRC Press, 2023. http://dx.doi.org/10.1201/9780429196577-69.
Texto completoJohnson, P. D. "Dirac cones and topological states: Dirac and Weyl semimetals". En Physics of Solid Surfaces, 535–45. Berlin, Heidelberg: Springer Berlin Heidelberg, 2018. http://dx.doi.org/10.1007/978-3-662-53908-8_128.
Texto completoBhaseen, M. J., J. S. Caux, I. I. Kogan y A. M. Tsvelik. "Disordered Dirac Fermions: Three Different Approaches". En New Theoretical Approaches to Strongly Correlated Systems, 173–203. Dordrecht: Springer Netherlands, 2001. http://dx.doi.org/10.1007/978-94-010-0838-9_8.
Texto completoLitvinov, Vladimir. "Indirect Exchange Interaction Mediated by Dirac Fermions". En Magnetism in Topological Insulators, 117–42. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-12053-5_7.
Texto completoSerban, Didina. "2D Random Dirac Fermions: Large N Approach". En Statistical Field Theories, 263–75. Dordrecht: Springer Netherlands, 2002. http://dx.doi.org/10.1007/978-94-010-0514-2_24.
Texto completoIsobe, Hiroki. "Interacting Dirac Fermions in (3+1) Dimensions". En Theoretical Study on Correlation Effects in Topological Matter, 33–62. Singapore: Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-3743-6_2.
Texto completoActas de conferencias sobre el tema "Dirac and Weyl fermions"
Buividovich, P. V. "Surface states of massive Dirac fermions with separated Weyl nodes". En XITH CONFERENCE ON QUARK CONFINEMENT AND HADRON SPECTRUM. AIP Publishing LLC, 2016. http://dx.doi.org/10.1063/1.4938609.
Texto completoBelyanin, Alexey. "Magnetooptics of materials with Dirac and Weyl fermions (Conference Presentation)". En Spintronics XV, editado por Henri-Jean M. Drouhin, Jean-Eric Wegrowe y Manijeh Razeghi. SPIE, 2022. http://dx.doi.org/10.1117/12.2634322.
Texto completoKumar, Upendra, Vipin Kumar, Enamullah y Girish S. Setlur. "Bloch-Siegert shift in Dirac-Weyl fermionic systems". En DAE SOLID STATE PHYSICS SYMPOSIUM 2017. Author(s), 2018. http://dx.doi.org/10.1063/1.5029045.
Texto completoMatos, Tonatiuh, Omar Gallegos y Pierre-Henri Chavanis. "Hydrodynamic representation and energy balance for the Dirac and Weyl fermions in curved space-times". En Proceedings of the MG16 Meeting on General Relativity. WORLD SCIENTIFIC, 2023. http://dx.doi.org/10.1142/9789811269776_0201.
Texto completoNagaosa, Naoto. "Correlated Weyl Fermions in Oxides". En Proceedings of the International Conference on Strongly Correlated Electron Systems (SCES2019). Journal of the Physical Society of Japan, 2020. http://dx.doi.org/10.7566/jpscp.30.011007.
Texto completoAkrap, Ana. "Magneto-optics of Dirac and Weyl semimetals". En Terahertz Emitters, Receivers, and Applications XI, editado por Manijeh Razeghi y Alexei N. Baranov. SPIE, 2020. http://dx.doi.org/10.1117/12.2569451.
Texto completoLeClair, Andre. "Renormalization Group for disordered Dirac Fermions". En Workshop on Integrable Theories, Solitons and Duality. Trieste, Italy: Sissa Medialab, 2002. http://dx.doi.org/10.22323/1.008.0022.
Texto completoOng, N. Phuan. "The Chiral Anomaly in Dirac and Weyl Semimetals". En Nobel Symposium 167: Chiral Matter. WORLD SCIENTIFIC, 2023. http://dx.doi.org/10.1142/9789811265068_0008.
Texto completoLuo, C. W., H. J. Wang, S. A. Ku, H. J. Chen, T. T. Yeh, J. Y. Lin, K. H. Wu et al. "Snapshots of Dirac Fermions near the Dirac Point in Topological Insulators". En International Conference on Ultrafast Phenomena. Washington, D.C.: OSA, 2014. http://dx.doi.org/10.1364/up.2014.08.tue.p2.31.
Texto completoCatterall, Simon. "Dirac-Kahler fermions and exact lattice supersymmetry". En XXIIIrd International Symposium on Lattice Field Theory. Trieste, Italy: Sissa Medialab, 2005. http://dx.doi.org/10.22323/1.020.0006.
Texto completoInformes sobre el tema "Dirac and Weyl fermions"
Huang, Lunan. Studies of Dirac and Weyl fermions by angle resolved photoemission spectroscopy. Office of Scientific and Technical Information (OSTI), enero de 2016. http://dx.doi.org/10.2172/1342554.
Texto completoHorng, Jason, Chi-Fan Chen, Baisong Geng, Caglar Girit, Yuanbo Zhang, Zhao Hao, Hans A. Bechtel, Michael Martin, Alex Zettl y Michael F. Crommie. Drude Conductivity of Dirac Fermions in Graphene. Fort Belvoir, VA: Defense Technical Information Center, enero de 2010. http://dx.doi.org/10.21236/ada526672.
Texto completoVekhter, Ilya. Inhomogeneous disorder Dirac Fermions: from heavy fermion superconductors to graphene. Final report. Office of Scientific and Technical Information (OSTI), agosto de 2013. http://dx.doi.org/10.2172/1089679.
Texto completoMishchenko, Eugene. Disorder, interactions, and their interplay in novel narrow-gap Dirac materials and Weyl semimetals. Office of Scientific and Technical Information (OSTI), marzo de 2022. http://dx.doi.org/10.2172/1856847.
Texto completo