Literatura académica sobre el tema "Dipole trapping"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Dipole trapping".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Dipole trapping"
Al-Marzoug, S. M. "Scattering of a discrete soliton by impurity in dipolar Bose–Einstein condensates". International Journal of Modern Physics B 28, n.º 30 (4 de diciembre de 2014): 1450214. http://dx.doi.org/10.1142/s0217979214502142.
Texto completoWebster, S. A., G. Hechenblaikner, S. A. Hopkins, J. Arlt y C. J. Foot. "Dipole force trapping of caesium atoms". Journal of Physics B: Atomic, Molecular and Optical Physics 33, n.º 19 (15 de septiembre de 2000): 4149–55. http://dx.doi.org/10.1088/0953-4075/33/19/323.
Texto completoWilliams, J. F., J. B. Wang y C. J. Carter. "A Monte Carlo Study of Radiation Trapping Effects". Australian Journal of Physics 50, n.º 3 (1997): 645. http://dx.doi.org/10.1071/p96099.
Texto completoSripakdee, Chatchawal. "The Investigation of WGM Effective Potential from Micro PANDA Ring Resonator". Applied Mechanics and Materials 866 (junio de 2017): 337–40. http://dx.doi.org/10.4028/www.scientific.net/amm.866.337.
Texto completoGoldstein, E., P. Pax, K. J. Schernthanner, B. Taylor y P. Meystre. "Influence of the dipole-dipole interaction on velocity-selective coherent population trapping". Applied Physics B Laser and Optics 60, n.º 2-3 (1995): 161–67. http://dx.doi.org/10.1007/bf01135858.
Texto completoDAVYDOVA, T. A. y V. M. LASHKIN. "Drift-wave trapping by drift vortices". Journal of Plasma Physics 58, n.º 1 (julio de 1997): 11–18. http://dx.doi.org/10.1017/s002237789700562x.
Texto completoHu, Fang-Qi y Ju-Kui Xue. "Breathing dynamics of a trapped impurity in a dipolar Bose gas". Modern Physics Letters B 28, n.º 22 (30 de agosto de 2014): 1450185. http://dx.doi.org/10.1142/s0217984914501851.
Texto completoDubau-Assibat, Nathalie, Antoine Baceiredo y Guy Bertrand. "Lawesson's Reagent: An Efficient 1,3-Dipole Trapping Agent". Journal of Organic Chemistry 60, n.º 12 (junio de 1995): 3904–6. http://dx.doi.org/10.1021/jo00117a050.
Texto completoAldossary, O. M. "Bottle atom trapping configuration by optical dipole forces". Journal of King Saud University - Science 26, n.º 1 (enero de 2014): 29–35. http://dx.doi.org/10.1016/j.jksus.2013.08.002.
Texto completoLee, Jong-Hoon, Junghwan Kim, Geunjin Kim, Dongguen Shin, Song Yi Jeong, Jinho Lee, Soonil Hong et al. "Introducing paired electric dipole layers for efficient and reproducible perovskite solar cells". Energy & Environmental Science 11, n.º 7 (2018): 1742–51. http://dx.doi.org/10.1039/c8ee00162f.
Texto completoTesis sobre el tema "Dipole trapping"
Harsono, Andrian. "Dipole trapping and manipulation of ultra-cold atoms". Thesis, University of Oxford, 2006. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.437007.
Texto completoLevonian, David (David S. ). "A Cavity-stabilized diode laser for dipole trapping of ytterbium". Thesis, Massachusetts Institute of Technology, 2015. http://hdl.handle.net/1721.1/105998.
Texto completoThis electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
Cataloged from student-submitted PDF version of thesis.
Includes bibliographical references (pages 99-103).
Bad-cavity lasers using a gain medium with a narrower linewidth than the laser cavity have the potential to achieve very narrow linewidths and extremely long coherence times. Such lasers could serve as active frequency standards or enable very-long-baseline interferometric telescopes at optical frequencies. The 6s6p³P₀ to 6s²¹S₀ ground state transition in ¹⁷¹Yb is a promising candidate for the gain medium of a bad-cavity laser due to its 44 mHz linewidth. For ytterbium to be used efficiently as a gain medium, its inhomogeneous broadening must be suppressed to a level lower than the linewidth of its gain transition. In this thesis, I design, implement, and characterize an optical lattice trap for ytterbium atoms. The trap consists of a diode laser which is frequency stabilized to an adjustable-length cavity where the ytterbium atoms are trapped. The length of this cavity is then locked by comparison of the laser frequency to a stable reference cavity. The resulting standing wave has high enough intensity that the recoil energy of the gain transition is smaller than the energy spacing between motional modes of the trapped atoms. This situation is known as the Lamb-Dicke regime and means that there is an absence of recoil broadening. The large spacing between motional modes of the trap also enables sideband resolved cooling of the atoms, which allows cooling to temperatures of 3 [mu]K, near the ground state of the trapping potential. Additionally, if the wavelength of the optical lattice is chosen to be at the magic wavelength for ytterbium, where the relative AC Stark shift for the two levels of the gain transition is zero to first order, there is no broadening due to varying intensity in the trap. Since the Doppler effect, recoil broadening and the AC Stark shift are the main sources of inhomogeneous broadening, this trapping scheme is expected to suppress inhomogeneous broadening to a level of 1 Hz.
by David Levonian.
M. Eng.
Van, Dongen Janelle. "Simultaneous cooling and trapping of 6Li and 85/87Rb". Thesis, University of British Columbia, 2007. http://hdl.handle.net/2429/351.
Texto completoGatto, Alexandro [Verfasser]. "Trapping fermionic potassium atoms in a quasi-electrostatic optical dipole potential / Alexandro Gatto". Bonn : Universitäts- und Landesbibliothek Bonn, 2012. http://d-nb.info/104408149X/34.
Texto completoWebster, Stephen. "Prospects for Bose-Einstein condensation in caesium : cold collisions and dipole-force trapping". Thesis, University of Oxford, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.325563.
Texto completoBlackhurst, Tyler D. "Numerical Investigation of Internal Wave-Vortex Dipole Interactions". BYU ScholarsArchive, 2012. https://scholarsarchive.byu.edu/etd/3133.
Texto completoKalita, Mukut R. "Search for a Permanent Electric Dipole Moment of 225Ra". UKnowledge, 2015. http://uknowledge.uky.edu/physastron_etds/34.
Texto completoKrasselt, Cornelius. "Dynamik der Photo-Lumineszenz-Unterbrechung von Halbleiter-Nanokristallen in elektrischen Feldern". Doctoral thesis, Universitätsbibliothek Chemnitz, 2015. http://nbn-resolving.de/urn:nbn:de:bsz:ch1-qucosa-172910.
Texto completoKondo, Jorge Douglas Massayuki. "Estudo de colisões entre átomos de Rydberg ultrafrios em amostras atômicas aprisionadas numa armadilha óptica de dipolo". Universidade de São Paulo, 2014. http://www.teses.usp.br/teses/disponiveis/76/76131/tde-03022015-171234/.
Texto completoIn this paper, we study collisions between ultracold Rydberg atoms in a high density atomic sample trapped in an optical dipole trap (ODT), type QUEST (Quasi Electrostatic Trap). Our goals included testing the manifestation of many-body phenomena and to study anisotropy effects in collisional processes involving two Rydberg atoms. In order to do this, we have chosen the collision process described by 5/2+5/2(+2)3/2+(2)7/2 in the range of 37 ≤ ≤47. The process was studied in the presence and absence of a dc static electric field, also known as Förster resonances. The results show that even at high atomic density, two-body interaction dominates de process, despite the clear manifestation of Rydberg blockade. After several improvements in our experimental setup, we have studied also a Förster resonance peak 375/2+375/2393/2+357/2 as a function of the magnitude of the dc static electric field as well as the angle between this field and the longitudinal axis of the ODT. We discuss the results and future challenges of the experiment.
Xiao, Hau-Yl y 蕭豪毅. "Trapping Cold Atoms with an Optical Dipole Trap". Thesis, 2012. http://ndltd.ncl.edu.tw/handle/14163296521974752188.
Texto completoLibros sobre el tema "Dipole trapping"
Evans, D. R. Non-dipolar magnetic field models and patterns of radio emission: Uranus and Neptune compared : final report. [Washington, DC: National Aeronautics and Space Administration, 1994.
Buscar texto completoUnited States. National Aeronautics and Space Administration., ed. Non-dipolar magnetic field models and patterns of radio emission: Uranus and Neptune compared : final report. [Washington, DC: National Aeronautics and Space Administration, 1994.
Buscar texto completoUnited States. National Aeronautics and Space Administration., ed. Non-dipolar magnetic field models and patterns of radio emission: Uranus and Neptune compared : final report. [Washington, DC: National Aeronautics and Space Administration, 1994.
Buscar texto completoTrenkwalder, Andreas. Design of a Resonator Dipole Trap: A Report About the Design of a Resonator Enhanced Optical Dipole Trap Aimed for Trapping a Mixture of Fermionic Species. VDM Verlag Dr. Mueller E.K., 2008.
Buscar texto completoWolf, E. L. More about the Atmosphere, Molecules, and their Interaction with Radiation. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198769804.003.0007.
Texto completoCapítulos de libros sobre el tema "Dipole trapping"
"Spinor Condensates in Optical Dipole Traps". En Optical Trapping and Manipulation of Neutral Particles Using Lasers, 291–93. WORLD SCIENTIFIC, 2006. http://dx.doi.org/10.1142/9789812774897_0018.
Texto completo"Trapping of Single Atoms in an Off-Resonance Optical Dipole Trap". En Optical Trapping and Manipulation of Neutral Particles Using Lasers, 333–36. WORLD SCIENTIFIC, 2006. http://dx.doi.org/10.1142/9789812774897_0022.
Texto completoShimoda, Koichi. "Trapping and Cooling of Neutral Atoms with the Dipole Force of a Laser Beam". En Laser Spectroscopy, 16–19. Elsevier, 1989. http://dx.doi.org/10.1016/b978-0-12-251930-7.50009-1.
Texto completo"Relationships Among Ferroelectric Fatigue, Electronic Charge Trapping, Defect-Dipoles, and Oxygen Vacancies in Perovskite Oxides". En Science and Technology of Integrated Ferroelectrics, 519–28. CRC Press, 2001. http://dx.doi.org/10.1201/9781482283365-46.
Texto completoRaspertova, Ilona y Rostyslav Lampeka. "NITRONE AS LIGANDS: STRUCTURE, PROPERTIES AND FUNCTIONALITY". En Development of scientific, technological and innovation space in Ukraine and EU countries. Publishing House “Baltija Publishing”, 2021. http://dx.doi.org/10.30525/978-9934-26-151-0-36.
Texto completoActas de conferencias sobre el tema "Dipole trapping"
Watts, Molly, Gadi Afek, Sarah Dickson, Fernando Monteiro, Luke Mozarsky, Juan Recoaro, Benjamin Siegel, Yu-Han Tseng, Jiaxiang Wang y David C. Moore. "Controlling electric dipole moments in levitated optomechanics". En Optical Trapping and Optical Micromanipulation XIX, editado por Kishan Dholakia y Gabriel C. Spalding. SPIE, 2022. http://dx.doi.org/10.1117/12.2634071.
Texto completoBradac, C., M. L. Juan, B. Besga, G. Molina-Terriza y T. Volz. "Observation of Atomic Dipole Forces in Optically Trapped Nanodiamonds Containing NV Centres, in a Liquid Environment". En Optical Trapping Applications. Washington, D.C.: OSA, 2015. http://dx.doi.org/10.1364/ota.2015.ott1d.6.
Texto completoAntipov, Sergey y Sergei Nagaitsev. "Electron cloud trapping in combined function dipole magnets". En 38th International Conference on High Energy Physics. Trieste, Italy: Sissa Medialab, 2017. http://dx.doi.org/10.22323/1.282.0773.
Texto completoZhang, Weihua y Olivier J. F. Martin. "Optical trapping and sensing with plasmonic dipole antennas". En SPIE NanoScience + Engineering, editado por Mark I. Stockman. SPIE, 2010. http://dx.doi.org/10.1117/12.864225.
Texto completoChu, Steven. "Laser cooling and trapping". En OSA Annual Meeting. Washington, D.C.: Optica Publishing Group, 1991. http://dx.doi.org/10.1364/oam.1991.tujj1.
Texto completoLee, Heun-Jin, Charles Adams, Nir Davidson, Brent Young, Martin Weitz, Mark Kasevich, Steven Chu, D. J. Wineland, C. E. Wieman y S. J. Smith. "Dipole Trapping, Cooling in Traps, and Long Coherence Times". En ATOMIC PHYSICS 14: Fourteenth International Conference on Atomic Physics. AIP, 1994. http://dx.doi.org/10.1063/1.2946010.
Texto completoBrandt, L., C. Muldoon, E. Brainis y A. Kuhn. "Towards a scalable dipole-trapping scheme for neutral atoms". En 2008 Conference on Lasers and Electro-Optics (CLEO). IEEE, 2008. http://dx.doi.org/10.1109/cleo.2008.4551977.
Texto completoGould, P. L., A. L. Migdall, H. J. Metcalf y W. D. Phillips. "Dipole laser trap for neutral atoms". En International Laser Science Conference. Washington, D.C.: Optica Publishing Group, 1986. http://dx.doi.org/10.1364/ils.1986.wf3.
Texto completoGarcía, Luis D., Lawrence C. Cheung, James C. Mikkelsen, Juan G. Santiago, Anthony F. Bernhardt y Vincent Malba. "A Sub-Millimeter Solenoid Device for Trapping Paramagnetic Microbeads". En ASME 2001 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2001. http://dx.doi.org/10.1115/imece2001/mems-23880.
Texto completoScielzo, N. D. "Progress Towards Laser Trapping of 225Ra for an Electric Dipole Moment Measurement". En PARTICLES AND NUCLEI: Seventeenth Internatinal Conference on Particles and Nuclei. AIP, 2006. http://dx.doi.org/10.1063/1.2220382.
Texto completo