Artículos de revistas sobre el tema "Diophantine equations"

Siga este enlace para ver otros tipos de publicaciones sobre el tema: Diophantine equations.

Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros

Elija tipo de fuente:

Consulte los 50 mejores artículos de revistas para su investigación sobre el tema "Diophantine equations".

Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.

También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.

Explore artículos de revistas sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.

1

Bruno, Alexander Dmitrievich. "From Diophantine approximations to Diophantine equations". Keldysh Institute Preprints, n.º 1 (2016): 1–20. http://dx.doi.org/10.20948/prepr-2016-1.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Aggarwal, S. y S. Kumar. "On the Exponential Diophantine Equation (132m) + (6r + 1)n = z2". Journal of Scientific Research 13, n.º 3 (1 de septiembre de 2021): 845–49. http://dx.doi.org/10.3329/jsr.v13i3.52611.

Texto completo
Resumen
Nowadays, mathematicians are very interested in discovering new and advanced methods for determining the solution of Diophantine equations. Diophantine equations are those equations that have more unknowns than equations. Diophantine equations appear in astronomy, cryptography, abstract algebra, coordinate geometry and trigonometry. Congruence theory plays an important role in finding the solution of some special type Diophantine equations. The absence of any generalized method, which can handle each Diophantine equation, is challenging for researchers. In the present paper, the authors have discussed the existence of the solution of exponential Diophantine equation (132m) + (6r + 1)n = Z2, where m, n, r, z are whole numbers. Results of the present paper show that the exponential Diophantine equation (132m) + (6r + 1)n = Z2, where m, n, r, z are whole numbers, has no solution in the whole number.
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Srinivasa Rao, K., T. S. Santhanam y V. Rajeswari. "Multiplicative Diophantine equations". Journal of Number Theory 42, n.º 1 (septiembre de 1992): 20–31. http://dx.doi.org/10.1016/0022-314x(92)90105-x.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Choudhry, Ajai. "Symmetric Diophantine Equations". Rocky Mountain Journal of Mathematics 34, n.º 4 (diciembre de 2004): 1281–98. http://dx.doi.org/10.1216/rmjm/1181069800.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Hajdu, L. y Á. Pintér. "Combinatorial Diophantine equations". Publicationes Mathematicae Debrecen 56, n.º 3-4 (1 de abril de 2000): 391–403. http://dx.doi.org/10.5486/pmd.2000.2179.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Cohn, J. H. E. "Twelve diophantine equations". Archiv der Mathematik 65, n.º 2 (agosto de 1995): 130–33. http://dx.doi.org/10.1007/bf01270690.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Tahiliani, Dr Sanjay. "More on Diophantine Equations". International Journal of Management and Humanities 5, n.º 6 (28 de febrero de 2021): 26–27. http://dx.doi.org/10.35940/ijmh.l1081.025621.

Texto completo
Resumen
In this paper, we will find the solutions of many Diophantine equations.Some are of the form 2(3 x )+ 5(7y ) +11=z2 for non negative x,y and z. we also investigate solutions ofthe Diophantine equation 2(x+3) +11(3y ) ─ 1= z2 for non negative x,y and z and finally, westudy the Diophantine equations (k!×k)n = (n!×n)k and ( 𝒌! 𝒌 ) 𝒏 = ( 𝒏! 𝒏 ) 𝒌 where k and n are positive integers. We show that the first one holds if and only if k=n and the second one holds if and only if k=n or (k,n) =(1,2),(2,1).We also investigate Diophantine equation u! + v! = uv and u! ─ v! = uv .
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Vălcan, Teodor Dumitru. "From Diophantian Equations to Matrix Equations (III) - Other Diophantian Quadratic Equations and Diophantian Equations of Higher Degree". Educatia 21, n.º 25 (30 de noviembre de 2023): 167–77. http://dx.doi.org/10.24193/ed21.2023.25.18.

Texto completo
Resumen
In this paper, we propose to continue the steps started in the first two papers with the same generic title and symbolically denoted by (I) and (II), namely, the presentation of ways of achieving a systemic vision on a certain mathematical notional content, a vision that to motivate and mobilize the activity of those who teach in the classroom, thus facilitating both the teaching and the assimilation of notions, concepts, scientific theories approached by the educational disciplines that present phenomena and processes from nature. Thus, we will continue in the same systemic approach, solving some Diophantine equations of higher degree, more precisely some generalizations of the Pythagorean equation and some quadratic Diophantine equations, in the set of natural numbers, then of the whole numbers, in order to "submerge" a such an equation in a ring of matrices and try to find as many matrix solutions as possible. In this way we will solve 12 large classes of Diophantine quadratic or higher order equations. For attentive readers interested in these matters, at the end of the paper we will propose 6 open problems. The solution of each of these open problems represents, in fact, a vast research activity and that can open the way to solving such more complicated Diophantine and / or matrix equations.
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Acewicz, Marcin y Karol Pąk. "Basic Diophantine Relations". Formalized Mathematics 26, n.º 2 (1 de julio de 2018): 175–81. http://dx.doi.org/10.2478/forma-2018-0015.

Texto completo
Resumen
Summary The main purpose of formalization is to prove that two equations ya(z)= y, y = xz are Diophantine. These equations are explored in the proof of Matiyasevich’s negative solution of Hilbert’s tenth problem. In our previous work [6], we showed that from the diophantine standpoint these equations can be obtained from lists of several basic Diophantine relations as linear equations, finite products, congruences and inequalities. In this formalization, we express these relations in terms of Diophantine set introduced in [7]. We prove that these relations are Diophantine and then we prove several second-order theorems that provide the ability to combine Diophantine relation using conjunctions and alternatives as well as to substitute the right-hand side of a given Diophantine equality as an argument in a given Diophantine relation. Finally, we investigate the possibilities of our approach to prove that the two equations, being the main purpose of this formalization, are Diophantine. The formalization by means of Mizar system [3], [2] follows Z. Adamowicz, P. Zbierski [1] as well as M. Davis [4].
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Biswas, D. "Does the Solution to the Non-linear Diophantine Equation 3<sup>x</sup>+35<sup>y</sup>=Z<sup>2</sup> Exist?" Journal of Scientific Research 14, n.º 3 (1 de septiembre de 2022): 861–65. http://dx.doi.org/10.3329/jsr.v14i3.58535.

Texto completo
Resumen
This paper investigates the solutions (if any) of the Diophantine equation 3x + 35y = Z2, where , x, y, and z are whole numbers. Diophantine equations are drawing the attention of researchers in diversified fields over the years. These are equations that have more unknowns than a number of equations. Diophantine equations are found in cryptography, chemistry, trigonometry, astronomy, and abstract algebra. The absence of any generalized method by which each Diophantine equation can be solved is a challenge for researchers. In the present communication, it is found with the help of congruence theory and Catalan’s conjecture that the Diophantine equation 3x + 35y = Z2 has only two solutions of (x, y, z) as (1, 0, 2) and (0, 1, 6) in non-negative integers.
Los estilos APA, Harvard, Vancouver, ISO, etc.
11

Wang, Min, Peng Yang y Yining Yang. "Carlitz’s Equations on Generalized Fibonacci Numbers". Symmetry 14, n.º 4 (7 de abril de 2022): 764. http://dx.doi.org/10.3390/sym14040764.

Texto completo
Resumen
Carlitz solved some Diophantine equations on Fibonacci or Lucas numbers. We extend his results to the sequence of generalized Fibonacci and Lucas numbers. In this paper, we solve the Diophantine equations of the form An1⋯Ank=Bm1⋯BmrCt1⋯Cts, where (An), (Bm), and (Ct) are generalized Fibonacci or Lucas numbers. Especially, we also find all solutions of symmetric Diophantine equations Ua1Ua2⋯Uam=Ub1Ub2⋯Ubn, where 1<a1≤a2≤⋯≤am, and 1<b1≤b2≤⋯≤bn.
Los estilos APA, Harvard, Vancouver, ISO, etc.
12

Alzer, Horst y Florian Luca. "Diophantine equations involving factorials". Mathematica Bohemica 142, n.º 2 (5 de diciembre de 2016): 181–84. http://dx.doi.org/10.21136/mb.2016.0045-15.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
13

Katayama, Shin-ichi y Claude Levesque. "On simultaneous diophantine equations". Acta Arithmetica 108, n.º 4 (2003): 369–77. http://dx.doi.org/10.4064/aa108-4-6.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
14

Babic, S. Bujacic y K. Nabardi. "On some Diophantine equations". Miskolc Mathematical Notes 22, n.º 1 (2021): 65. http://dx.doi.org/10.18514/mmn.2021.2638.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
15

Leitner, Dominik J. "Two exponential diophantine equations". Journal de Théorie des Nombres de Bordeaux 23, n.º 2 (2011): 479–87. http://dx.doi.org/10.5802/jtnb.773.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
16

Brüdern, Jörg y Rainer Dietmann. "Random Diophantine equations, I". Advances in Mathematics 256 (mayo de 2014): 18–45. http://dx.doi.org/10.1016/j.aim.2014.01.017.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
17

Stroeker, Roelof J. y Benjamin M. M. de Weger. "Elliptic binomial diophantine equations". Mathematics of Computation 68, n.º 227 (23 de febrero de 1999): 1257–82. http://dx.doi.org/10.1090/s0025-5718-99-01047-9.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
18

Mollin, R. "Diophantine equations and congruences". International Journal of Algebra 1 (2007): 293–302. http://dx.doi.org/10.12988/ija.2007.07031.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
19

Jakimczuk, Rafael. "Diophantine equations. Elementary methods". International Mathematical Forum 12 (2017): 429–38. http://dx.doi.org/10.12988/imf.2017.7223.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
20

Baica, Malvina. "Diophantine equations and identities". International Journal of Mathematics and Mathematical Sciences 8, n.º 4 (1985): 755–77. http://dx.doi.org/10.1155/s0161171285000849.

Texto completo
Resumen
The general diophantine equations of the second and third degree are far from being totally solved. The equations considered in this paper are i) x2−my2=±1 ii) x3+my3+m2z3−3mxyz=1iii) Some fifth degree diopantine equationsInfinitely many solutions of each of these equations will be stated explicitly, using the results from the ACF discussed before.It is known that the solutions of Pell's equation are well exploited. We include it here because we shall use a common method to solve these three above mentioned equations and the method becomes very simple in Pell's equations case.Some new third and fifth degree combinatorial identities are derived from units in algebraic number fields.
Los estilos APA, Harvard, Vancouver, ISO, etc.
21

Dofs, Erik. "Two exponential Diophantine equations". Glasgow Mathematical Journal 39, n.º 2 (mayo de 1997): 231–32. http://dx.doi.org/10.1017/s0017089500032122.

Texto completo
Resumen
In [3], two open problems were whether either of the diophantine equationswith n ∈ Z and f a prime number, is solvable if ω > 3 and 3 √ ω, but in this paper we allow f to be any (rational) integer and also 3 | ω. Equations of this form and more general ones can effectively be solved [5] with an advanced method based on analytical results, but the search limits are usually of enormous size. Here both equations (1) are norm equations in K (√–3): N(a + bp) = fw with p = (√–1 + –3)/2 which makes it possible to treat them arithmetically.
Los estilos APA, Harvard, Vancouver, ISO, etc.
22

Hering, Christoph. "On the Diophantine Equations". Applicable Algebra in Engineering, Communication and Computing 7, n.º 4 (1 de junio de 1996): 251–62. http://dx.doi.org/10.1007/s002000050031.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
23

DĄBROWSKI, ANDRZEJ. "ON A CLASS OF GENERALIZED FERMAT EQUATIONS". Bulletin of the Australian Mathematical Society 82, n.º 3 (18 de junio de 2010): 505–10. http://dx.doi.org/10.1017/s000497271000033x.

Texto completo
Resumen
AbstractWe generalize the main result of the paper by Bennett and Mulholland [‘On the diophantine equation xn+yn=2αpz2’, C. R. Math. Acad. Sci. Soc. R. Can.28 (2006), 6–11] concerning the solubility of the diophantine equation xn+yn=2αpz2. We also demonstrate, by way of examples, that questions about solubility of a class of diophantine equations of type (3,3,p) or (4,2,p) can be reduced, in certain cases, to studying several equations of the type (p,p,2).
Los estilos APA, Harvard, Vancouver, ISO, etc.
24

Maran, A. K. "A Simple Solution for Diophantine Equations of Second, Third and Fourth Power". Mapana - Journal of Sciences 4, n.º 1 (12 de septiembre de 2005): 96–100. http://dx.doi.org/10.12723/mjs.6.17.

Texto completo
Resumen
We know already that the set Of positive integers, which are satisfying the Pythagoras equation Of three variables and four variables cre called Pythagorean triples and quadruples respectively. These cre Diophantine equation OF second power. The all unknowns in this Pythagorean equation have already Seen by mathematicians Euclid and Diophantine. Hcvwever the solution defined by Euclid are Diophantine is also again having unknowns. The only to solve the Diophantine equations wos and error method. Moreover, the trial and error method to obtain these values are not so practical and easy especially for time bound work, since the Diophantine equations are having more than unknown variables.
Los estilos APA, Harvard, Vancouver, ISO, etc.
25

Sankari, Hasan y Mohammad Abobala. "On The Group of Units Classification In 3-Cyclic and 4-cyclic Refined Rings of Integers And The Proof of Von Shtawzens' Conjectures". International Journal of Neutrosophic Science 21, n.º 4 (2023): 146–54. http://dx.doi.org/10.54216/ijns.210414.

Texto completo
Resumen
First Von Shtawzen's Diophantine equation is a non-linear Diophantine equation with three variables . This equation has been conjectured that it has a finite number of integer solutions, and this number of solutions is divisible by 6. Second Von Shtawzen's Diophantine equation is a non-linear Diophantine equation with four variables. This equation has been conjectured that it has a finite number of integer solutions, and this number of solutions is divisible by 8. In this paper, we prove that first Von Shtawzen's conjecture is true, where we show that first Von Shtawzen's Diophantine equations has exactly 12 solutions. On the other hand, we find all solutions of this Diophantine equations. In addition, we provide a full proof of second Von Shtawzen's conjecture, where we prove that the previous Diophantine equation has exactly 16 solutions, and we determine all of its possible solutions
Los estilos APA, Harvard, Vancouver, ISO, etc.
26

Choudhry, Ajai. "A new method of solving certain quartic and higher degree diophantine equations". International Journal of Number Theory 14, n.º 08 (22 de agosto de 2018): 2129–54. http://dx.doi.org/10.1142/s1793042118501282.

Texto completo
Resumen
In this paper, we present a new method of solving certain quartic and higher degree homogeneous polynomial diophantine equations in four variables. The method can also be applied to some diophantine systems in five or more variables. Under certain conditions, the method yields an arbitrarily large number of integer solutions of such diophantine equations and diophantine systems, two examples being a sextic equation in four variables and two simultaneous equations of degrees four and six in six variables. We also simultaneously obtain arbitrarily many rational solutions of certain related nonhomogeneous equations of high degree. We obtain these solutions without finding a curve of genus 0 or 1 on the variety defined by the equations concerned. It appears that there exist projective varieties on which there are an arbitrarily large number of rational points and which do not contain a curve of genus 0 or 1 with infinitely many rational points.
Los estilos APA, Harvard, Vancouver, ISO, etc.
27

Chen, Imin. "A Diophantine Equation Associated to X0(5)". LMS Journal of Computation and Mathematics 8 (2005): 116–21. http://dx.doi.org/10.1112/s1461157000000929.

Texto completo
Resumen
AbstractSeveral classes of Fermat-type diophantine equations have been successfully resolved using the method of galois representations and modularity. In each case, it is possible to view the proper solutions to the diophantine equation in question as corresponding to suitably defined integral points on a modular curve of level divisible by 2 or 3. Motivated by this point of view, an example of a diophantine equation associated to the modular curve X0(5) is discussed in this paper. The diophantine equation has four terms rather than the usual three terms characteristic of generalized Fermat equations.
Los estilos APA, Harvard, Vancouver, ISO, etc.
28

Das, Radhika, Manju Somanath y V. A. Bindu. "INTEGER SOLUTION ANALYSIS FOR A DIOPHANTINE EQUATION WITH EXPONENTIALS". jnanabha 53, n.º 02 (2023): 69–73. http://dx.doi.org/10.58250/jnanabha.2023.53208.

Texto completo
Resumen
The exponential Diophantine equation is one of the distinctive types of Diophantine equations where the variables are expressed as exponents. For these equations, considerable excellent research has already been done. In this study, we try to solve the equations 3λ + 103μ = ξ2, 3λ + 181μ = ξ2, 3λ + 193μ = ξ2.
Los estilos APA, Harvard, Vancouver, ISO, etc.
29

Ulas, Maciej. "Some experiments with Ramanujan-Nagell type Diophantine equations". Glasnik Matematicki 49, n.º 2 (18 de diciembre de 2014): 287–302. http://dx.doi.org/10.3336/gm.49.2.04.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
30

Anuradha Kameswari, P., S. S. Sriniasarao y A. Belay. "AN APPLICATION OF LINEAR DIOPHANTINE EQUATIONS TO CRYPTOGRAPHY". Advances in Mathematics: Scientific Journal 10, n.º 6 (10 de junio de 2021): 2799–806. http://dx.doi.org/10.37418/amsj.10.6.8.

Texto completo
Resumen
In this chapter we propose a Key exchange protocol based on a random solution of linear Diophantine equation in n variables, where the considered linear Diophantine equation satisfies the condition for existence of infinitely many solutions. Also the crypt analysis of the protocol is analysed.
Los estilos APA, Harvard, Vancouver, ISO, etc.
31

Wu, Yi y Zheng Ping Zhang. "The Positive Integer Solutions of a Diophantine Equation". Applied Mechanics and Materials 713-715 (enero de 2015): 1483–86. http://dx.doi.org/10.4028/www.scientific.net/amm.713-715.1483.

Texto completo
Resumen
In this paper, we studied the positive integer solutions of a typical Diophantine equation starting from two basic equations including a Diophantine equation and a Pell equation, and we will prove all the positive integer solutions of the typical Diophantine equation.
Los estilos APA, Harvard, Vancouver, ISO, etc.
32

Vansan, Alexandre Hungaro. "EQUAÇÕES DIOFANTINAS: UM PROJETO PARA A SALA DE AULA E O USO DO GEOGEBRA". Ciência e Natura 37 (7 de agosto de 2015): 532. http://dx.doi.org/10.5902/2179460x14629.

Texto completo
Resumen
http://dx.doi.org/10.5902/2179460X14629The study of Number Theory here in this article aims to study some properties of integer multiples or divisors, emphasizing issues related to divisibility, which will be of great importance for the study of Diophantine equations, which in turn will provide for applications using Geogebra software. The Diophantine equations are algebraic equations that show the solution set of integers, which in this paper we will discuss the Linear Diophantine equations with two unknowns of the form 𝑎 x + 𝑏 y = 𝑐 with 𝑎, 𝑏, 𝑐 integers. In which they are applied as an alternative way for students to find solutions to problems he faced during his school life. This work is intended to further training of teachers who are teaching in the elementary and high school, where you can find suggestions for activities that you can apply in the classroom, or even include in your lesson plan Diophantine equations, since here he will find a suggestion of teaching work plan to include in their classes.
Los estilos APA, Harvard, Vancouver, ISO, etc.
33

Kulkarni, Manisha y B. Sury. "Diophantine equations with Bernoulli polynomials". Acta Arithmetica 116, n.º 1 (2005): 25–34. http://dx.doi.org/10.4064/aa116-1-3.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
34

Grytczuk, Aleksander y Izabela Kurzydlo. "On some matrix diophantine equations". Tsukuba Journal of Mathematics 33, n.º 2 (diciembre de 2009): 299–304. http://dx.doi.org/10.21099/tkbjm/1267209422.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
35

AAAVoloch, José Felipe. "Commitment schemes and diophantine equations". Open Book Series 4, n.º 1 (29 de diciembre de 2020): 1–5. http://dx.doi.org/10.2140/obs.2020.4.1.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
36

Kimura, Noriaki y Kenneth S. Williams. "Infinitely Many Insolvable Diophantine Equations". American Mathematical Monthly 111, n.º 10 (diciembre de 2004): 909. http://dx.doi.org/10.2307/4145100.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
37

Pocherevin, R. V. "Multidimensional system of Diophantine equations". Moscow University Mathematics Bulletin 72, n.º 1 (enero de 2017): 41–43. http://dx.doi.org/10.3103/s0027132217010089.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
38

Brenner, J. L. "Book Review: Exponential Diophantine equations". Bulletin of the American Mathematical Society 25, n.º 1 (1 de julio de 1991): 145–47. http://dx.doi.org/10.1090/s0273-0979-1991-16048-9.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
39

Magyar, Akos. "Diophantine equations and ergodic theorems". American Journal of Mathematics 124, n.º 5 (2002): 921–53. http://dx.doi.org/10.1353/ajm.2002.0029.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
40

Kreso, Dijana y Csaba Rakaczki. "Diophantine equations with Euler polynomials". Acta Arithmetica 161, n.º 3 (2013): 267–81. http://dx.doi.org/10.4064/aa161-3-5.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
41

Buhanan, David y Jaroslaw Kwapisz. "Cocyclic subshifts from Diophantine equations". Dynamical Systems 29, n.º 1 (5 de noviembre de 2013): 56–66. http://dx.doi.org/10.1080/14689367.2013.844225.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
42

Kimura, Noriaki y Kenneth S. Williams. "Infinitely Many Insolvable Diophantine Equations". American Mathematical Monthly 111, n.º 10 (diciembre de 2004): 909–13. http://dx.doi.org/10.1080/00029890.2004.11920157.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
43

Berend, Daniel y Jørgen E. Harmse. "On polynomial-factorial diophantine equations". Transactions of the American Mathematical Society 358, n.º 4 (21 de octubre de 2005): 1741–79. http://dx.doi.org/10.1090/s0002-9947-05-03780-3.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
44

Halter-Koch, Franz. "Diophantine equations of Pellian type". Journal of Number Theory 131, n.º 9 (septiembre de 2011): 1597–615. http://dx.doi.org/10.1016/j.jnt.2011.02.005.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
45

Danilov, L. V. "Diophantine equations xm?Ayn=k". Mathematical Notes of the Academy of Sciences of the USSR 46, n.º 6 (diciembre de 1989): 914–19. http://dx.doi.org/10.1007/bf01158625.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
46

Cook, Brian y Ákos Magyar. "Diophantine equations in the primes". Inventiones mathematicae 198, n.º 3 (23 de abril de 2014): 701–37. http://dx.doi.org/10.1007/s00222-014-0508-1.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
47

Mollin, R. A. "Diophantine equations and class numbers". Journal of Number Theory 24, n.º 1 (septiembre de 1986): 7–19. http://dx.doi.org/10.1016/0022-314x(86)90053-3.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
48

Krasikov, I. y Y. Roditty. "Switching reconstruction and diophantine equations". Journal of Combinatorial Theory, Series B 54, n.º 2 (marzo de 1992): 189–95. http://dx.doi.org/10.1016/0095-8956(92)90050-8.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
49

Stephan Ramon Garcia, Vincent Selhorst-Jones, Daniel E. Poore y Noah Simon. "Quotient Sets and Diophantine Equations". American Mathematical Monthly 118, n.º 8 (2011): 704. http://dx.doi.org/10.4169/amer.math.monthly.118.08.704.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
50

Jakimczuk, Rafael. "Diophantine equations. Elementary methods II". International Mathematical Forum 12, n.º 20 (2017): 953–65. http://dx.doi.org/10.12988/imf.2017.71192.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
Ofrecemos descuentos en todos los planes premium para autores cuyas obras están incluidas en selecciones literarias temáticas. ¡Contáctenos para obtener un código promocional único!

Pasar a la bibliografía