Literatura académica sobre el tema "Digital laser"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Digital laser".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Digital laser"
Guang Zheng, B. Wang, T. Fang, H. Cheng, Y. Qi, Y. W. Wang, B. X. Yan et al. "Laser Digital Cinema Projector". Journal of Display Technology 4, n.º 3 (septiembre de 2008): 314–18. http://dx.doi.org/10.1109/jdt.2008.924163.
Texto completoShimura, Mikihiko, Koichi Imanaka, Hiroshi Sekii, Akira Fujimoto y Takeshi Takagi. "Semiconductor laser digital scanner". Optical Engineering 29, n.º 3 (1990): 230. http://dx.doi.org/10.1117/12.55582.
Texto completoIchioka, Y., T. Kobayashi, H. Kitagawa y T. Suzuki. "Digital scanning laser microscope". Applied Optics 24, n.º 5 (1 de marzo de 1985): 691. http://dx.doi.org/10.1364/ao.24.000691.
Texto completoPiqué, Alberto, Heungsoo Kim, Ray Auyeung, Jiwen Wang, Andrew Birnbaum y Scott Mathews. "Laser-Based Digital Microfabrication". NIP & Digital Fabrication Conference 25, n.º 1 (1 de enero de 2009): 394–97. http://dx.doi.org/10.2352/issn.2169-4451.2009.25.1.art00108_1.
Texto completoLi, Qingfeng, David Grojo, Anne-Patricia Alloncle, Boris Chichkov y Philippe Delaporte. "Digital laser micro- and nanoprinting". Nanophotonics 8, n.º 1 (16 de octubre de 2018): 27–44. http://dx.doi.org/10.1515/nanoph-2018-0103.
Texto completoHuang, Cing-Yi, Kuo-Chih Chang y Shu-Chun Chu. "Experimental Investigation of Generating Laser Beams of on-Demand Lateral Field Distribution from Digital Lasers". Materials 12, n.º 14 (10 de julio de 2019): 2226. http://dx.doi.org/10.3390/ma12142226.
Texto completoPlesch, A., U. Klingbeil y J. Bille. "Digital laser scanning fundus camera". Applied Optics 26, n.º 8 (15 de abril de 1987): 1480. http://dx.doi.org/10.1364/ao.26.001480.
Texto completoNgcobo, Sandile, Igor Litvin, Liesl Burger y Andrew Forbes. "Demonstrating a Rewritable Digital Laser". Optics and Photonics News 24, n.º 12 (1 de diciembre de 2013): 28. http://dx.doi.org/10.1364/opn.24.12.000028.
Texto completoLang, Marion, Rudolf Neuhaus y Jürgen Stuhler. "Digital Revolution in Laser Control". Optik & Photonik 10, n.º 1 (febrero de 2015): 38–41. http://dx.doi.org/10.1002/opph.201500005.
Texto completoKowalik, John, John J. Rosinski y Bradford R. Siepman. "Digital business telephones-project laser". Bell Labs Technical Journal 3, n.º 1 (14 de agosto de 2002): 122–33. http://dx.doi.org/10.1002/bltj.2097.
Texto completoTesis sobre el tema "Digital laser"
Crossingham, Grant James. "A digital laser slopemeter". Thesis, University of Southampton, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.481690.
Texto completoRanély-Vergé-Dépré, Claude-Alban. "Digital laser and Coherent Beam combination". Electronic Thesis or Diss., Institut polytechnique de Paris, 2024. http://www.theses.fr/2024IPPAX131.
Texto completoCoherent Beam Combining (CBC) is an innovative architectural approach to designing efficient laser sources combining high average power and high peak power (kW/GW), while offering great flexibility in the spatial shaping of the resulting beam. Ytterbium (Yb)-doped fiber amplifiers offer excellent thermal management thanks to the fiber's high surface-to-volume ratio (facilitating cooling) and high efficiency made possible by the long interaction lengths accessible and the low quantum defect of the Yb dopant. Moreover, these fibers feature a gain spectral width that supports pulse durations of down to a few hundred femtoseconds. This makes it possible to amplify femtosecond pulse trains at high repetition rates. The two prototypes studied in this thesis use the combination of this technology with CBC architecture. The first is based on a composite pupil with 61 tiled beams, offering individual control of its channels and introducing the concept of digital laser. Its pulse duration is reduced by a non-linear "post-compression" technique, enabling it to retain its digital properties. The second prototype, with its superposition of 7 pupils, is being studied and developed for its greater theoretical efficiency
Mosayebi, Mahshad. "Digital Laser Speckle Image Correlation". OpenSIUC, 2017. https://opensiuc.lib.siu.edu/theses/2131.
Texto completoHeath, Daniel. "Digital micromirror devices and femtosecond laser pulses for rapid laser micromachining". Thesis, University of Southampton, 2017. https://eprints.soton.ac.uk/417275/.
Texto completoNewberry, Shawn. "Laser Speckle Patterns with Digital Image Correlation". OpenSIUC, 2021. https://opensiuc.lib.siu.edu/theses/2885.
Texto completoAmer, Eynas. "Pulsed laser ablation studied using digital holography". Doctoral thesis, Luleå tekniska universitet, Strömningslära och experimentell mekanik, 2009. http://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-18194.
Texto completoGodkänd; 2009; 20091018 (eyname); DISPUTATION Ämnesområde: Experimentell mekanik/Experimental Mechanics Opponent: Reader in Laser Engineering Bill O’Neill, University of Cambridge, UK Ordförande: Professor Mikael Sjödahl, Luleå tekniska universitet Tid: Fredag den 20 november 2009, kl 10.00 Plats: E 231, Luleå tekniska universitet
Cronin, Christopher Joseph. "Digital frequency demodulation for a laser vibrometer". Thesis, This resource online, 1994. http://scholar.lib.vt.edu/theses/available/etd-11102009-020344/.
Texto completoAmer, Mohamed Eynas. "Pulsed laser ablation studied using digital holography /". Luleå : Department of Applied Physics and Mechanical Engineering, Luleå University of Technology, 2009. http://pure.ltu.se/ws/fbspretrieve/3315450.
Texto completoLarsson, Ola. "Digital Implementation of a Laser Doppler Perfusion Monitor". Thesis, Linköping University, Department of Electrical Engineering, 2006. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-7091.
Texto completoUnder 20 års tid har Perimed AB utvecklat och tillverkat LDPM- och LDPI-instrument som är baserade på en analog filterkonstruktion. De analoga komponenterna i konstruktionen är komplexa och icke-linjära med hänsyn till frekvens och de driver även med temperaturen. Funktionen hos konstruktionen beror också kraftigt av att de analoga komponenterna trimmas in under produktionen.
Det här examensarbetet syftar till att ta fram en alternativ design baserad kring en digital signal processor. Den digitala signalbehandlingsmetod som beskrivs baseras på väl förankrade laser-Doppler perfusionsteorier. Den implementerade signalbehandlingsalgoritmen beräknar perfusionen ur en samplad fotodetektorström, som har filtrerats till AC- och DC-komponenter med hjälp av ett analogt detektorkort. Algoritmen producerar en råperfusionssignal genom att beräkna en frekvensviktad summa av fotodetektorströmmens effektspektrum. Kompensation för detektorns brus och normalisering med ljusintensitet har också implementerats.
Den presenterade implementationen har verifierats mot ett exemplar av LDPM-enheten PF 5010 som har använts som referensinstrument vid alla mätningar. Mätningar in vitro har påvisat liknande mätresultat som referensinstrumentet för en referensvätska med hög perfusion och även för ett statiskt mätobjekt. Vidare har implementationen verifierats med mätningar in vivo på hud, vilket har påvisat nära nog identiska signalnivåer och gensvar på värmeprovokationer som referensinstrumentet.
Den demonstrerade uppfinningen förenklar tillverkningen av instrumenten eftersom antalet komponenter reduceras avsevärt och därmed antalet produktionstester. Användandet av en DSP reducerar dessutom instrumentets temperaturkänslighet eftersom den ersätter flera temperaturkänsliga komponenter.
For 20 years Perimed AB have been developing and manufacturing LDPM and LDPI instruments based on an analog filter construction. The analog components in the construction are complex and suffer from non-linear frequency dependency and temperature drifts. The functionality of the design is also heavily depending on analog components which need to be trimmed in the production.
In this thesis, an alternative design employing a digital signal processor is presented. The signal processing method used is based on well established laser Doppler perfusion theories. The implemented signal processing algorithm calculates the perfusion from a sampled photodetector current, pre-filtered into AC and DC components by an analog detector card. The algorithm produces a raw perfusion signal by calculating a frequency weighted sum of the power spectral density, PSD, of the photocurrent. Detector noise compensation and light intensity normalization of the signal has also been implemented.
The presented digital implementation has been verified using the PF 5010 LDPM unit as a reference. In vitro measurements have shown similar behaviour as the reference in a highly perfused reference fluid as well as for a static scatterer. Furthermore, the DSP implementation has been verified on in vivo measurements of skin, showing nearly identical signal levels and response to heat provocation as the reference.
The demonstrated invention improves the manufacturability of the instruments since it reduces the number of electronic components significantly and thus, the amount of manufacturing tests. The DSP also reduces the temperature sensitivity of the instrument since it replaces several analog components sensitive to temperature changes.
Erk, Patrick P. (Patrick Peter). "Digital signal processing techniques for laser-doppler anemometry". Thesis, Massachusetts Institute of Technology, 1990. http://hdl.handle.net/1721.1/43026.
Texto completoLibros sobre el tema "Digital laser"
S, Dongare A. y Bhabha Atomic Research Centre, eds. Digital beam profiler for infrared lasers. Mumbai: Bhabha Atomic Research Centre, 2003.
Buscar texto completoBlutinger, Jonathan David. Digital Cuisine: Food Printing and Laser Cooking. [New York, N.Y.?]: [publisher not identified], 2022.
Buscar texto completoHunter, David Mackenzie. Digital radiography by laser scanned readout of amorphous selenium. Ottawa: National Library of Canada, 1996.
Buscar texto completoMontes, Felix G. Digital data acquisition for laser radar for vibration analysis. Monterey, Calif: Naval Postgraduate School, 1998.
Buscar texto completoBowen, M. F. Ultimate ocean depth packaging for a digital ring laser gyroscope. Woods Hole, Mass: Woods Hole Oceanographic Institution, 1998.
Buscar texto completoF, Marshall Gerald, ed. Handbook of optical and laser scanning. New York: Marcel Dekker, 2004.
Buscar texto completoGauthier, V. Application of PIDV to complex flows: Velocity field measurements in the front of a heavy gas cloud. Rhode Saint Genese, Belgium: Von Karman Institute for Fluid Dynamics, 1988.
Buscar texto completoShi Weiming yan jiu shi. Mac ying yin da hang: Xia zai, bo fang, fen xiang, dui kao DVD, zhuan dang. Taibei Shi: Qi biao chu ban gu fen you xian gong si, 2008.
Buscar texto completoChambers, Mark L. Hewlett-Packard official recordable CD handbook. Foster City, CA: IDG Books Worldwide, 2000.
Buscar texto completoWei-Jei, Yang, Yamamoto Fujio, Mayinger F. 1931-, American Society of Mechanical Engineers. Fluids Engineering Division. y ASME/JSME Fluids Engineering and Laser Anemometry Conference and Exhibition (1995 : Hilton Head, S.C.), eds. Flow visualization and image processing of multiphase systems: Presented at the 1995 ASME/JSME Fluids Engineering and Laser Anemometry Conference and Exhibition, August 13-18, 1995, Hilton Head, South Carolina. New York: American Society of Mechanical Engineers, 1995.
Buscar texto completoCapítulos de libros sobre el tema "Digital laser"
Rinkevichyus, B. S., O. A. Evtikhieva y I. L. Raskovskaya. "Digital Refractogram Recording and Processing". En Laser Refractography, 135–67. New York, NY: Springer New York, 2010. http://dx.doi.org/10.1007/978-1-4419-7397-9_7.
Texto completoPiqué, Alberto. "Laser Transfer Techniques for Digital Microfabrication". En Laser Precision Microfabrication, 259–91. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-10523-4_11.
Texto completoBreda, Alberto, Salvatore Micali, Angelo Territo, Mino Rizzo, Giulio Bevilacqua, Iacopo Meneghetti, Maria Chiara Sighinolfi, Bernardo Rocco y Giampaolo Bianchi. "Confocal Laser Endomicroscopy". En Urologic Surgery in the Digital Era, 187–202. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-63948-8_11.
Texto completoBrettel, Hans. "Pseudocolour Displays in Digital Image Processing". En Laser/Optoelektronik in der Technik / Laser/Optoelectronics in Engineering, 349–53. Berlin, Heidelberg: Springer Berlin Heidelberg, 1990. http://dx.doi.org/10.1007/978-3-642-48372-1_73.
Texto completoTooley, F. A. P. "Digital Logic Elements for Optical Computing". En Laser Science and Technology, 403–22. Boston, MA: Springer US, 1988. http://dx.doi.org/10.1007/978-1-4757-0378-8_25.
Texto completoSchlüter, P. "Positional Correction During Laser Cutting by Means of Digital Image Processing". En Laser in der Technik / Laser in Engineering, 234–37. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/978-3-642-84736-3_40.
Texto completoHutzler, P. J. S., S. Berber y W. Waidelich. "An Interactive System for Digital Optical Image Processing". En Laser/Optoelektronik in der Technik / Laser/Optoelectronics in Engineering, 218–21. Berlin, Heidelberg: Springer Berlin Heidelberg, 1986. http://dx.doi.org/10.1007/978-3-642-82638-2_43.
Texto completoHutzler, P. "Opto-Electronic Sensor Systems for Digital Image Processing". En Laser/Optoelektronik in der Technik / Laser/Optoelectronics in Engineering, 106–16. Berlin, Heidelberg: Springer Berlin Heidelberg, 1987. http://dx.doi.org/10.1007/978-3-642-83174-4_26.
Texto completoPedrini, G., Y. Zou y H. J. Tiziani. "Speckle- and Digital Holographic Interferometry (A Comparison)". En Laser in Forschung und Technik / Laser in Research and Engineering, 485–88. Berlin, Heidelberg: Springer Berlin Heidelberg, 1996. http://dx.doi.org/10.1007/978-3-642-80263-8_104.
Texto completoLi, Xiaojie, Bao-zhen Ge, Dan Zhao, Qing-guo Tian y K. David Young. "Auto-calibration of a Laser 3D Color Digitization System". En Digital Human Modeling, 691–99. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-02809-0_73.
Texto completoActas de conferencias sobre el tema "Digital laser"
Tani, Shuntaro. "Digital Twins for Laser Microprocessing Based on Large-Scale Experimental Data". En Laser Applications Conference, LM1B.3. Washington, D.C.: Optica Publishing Group, 2024. https://doi.org/10.1364/lac.2024.lm1b.3.
Texto completoSementin, V. V., A. P. Pogoda y A. S. Boreysho. "Filtering methods for reconstructed digital holograms". En 2024 International Conference Laser Optics (ICLO), 240. IEEE, 2024. http://dx.doi.org/10.1109/iclo59702.2024.10624570.
Texto completoSoman, Pranav. "Addressing key challenges in multimaterial and multiscale digital projection stereolithography". En Laser 3D Manufacturing XII, editado por Henry Helvajian, Bo Gu y Hongqiang Chen, 11. SPIE, 2025. https://doi.org/10.1117/12.3040820.
Texto completoPetrov, V. M., D. V. Masygin, A. A. Sevryugin, E. V. Shalymov, E. K. Iurieva, D. V. Venediktov y V. Yu Venediktov. "Holographic Interferometers for Optical Digital Medical Tomography". En 2024 International Conference Laser Optics (ICLO), 176. IEEE, 2024. http://dx.doi.org/10.1109/iclo59702.2024.10624127.
Texto completoNumazawa, Keisuke, Kota Kumagai y Yoshio Hayasaki. "Volumetric micro clouds drawn with femtosecond laser pulses". En Digital Holography and Three-Dimensional Imaging, W5B.4. Washington, D.C.: Optica Publishing Group, 2024. http://dx.doi.org/10.1364/dh.2024.w5b.4.
Texto completoDu, Qiu-shuang, Wan-cheng Liu, Yu-hai Li, Song Guan y Yi-ning Yang. "A high dynamic range imaging method based on the digital micromirror device". En Laser Technology and Applications, editado por Pu Zhou, 48. SPIE, 2024. https://doi.org/10.1117/12.3047822.
Texto completoStevens, Rock, Josiah Dykstra, Wendy Knox Everette y Michelle L. Mazurek. "How to Hack Compliance: Using Lessons Learned to Repeatably Audit Compliance Programs for Digital Security Concerns". En Learning from Authoritative Security Experiment Results. Reston, VA: Internet Society, 2020. http://dx.doi.org/10.14722/laser.2020.23003.
Texto completoTakeuchi, Eric B., Graham W. Flint, Robert Bergstedt, Paul J. Solone, Dicky Lee y Peter F. Moulton. "Laser Digital Cinema". En Photonics West 2001 - Electronic Imaging, editado por Ming H. Wu. SPIE, 2001. http://dx.doi.org/10.1117/12.420785.
Texto completoSmeu, Emil, Niculae N. Puscas y Ion M. Popescu. "Digital laser powermeter". En ROMOPTO '97: Fifth Conference on Optics, editado por Valentin I. Vlad y Dan C. Dumitras. SPIE, 1998. http://dx.doi.org/10.1117/12.312715.
Texto completoAptowicz, Kevin B., Ahmed M. Alsayed, Yilong L. Han y Arjun G. Yodh. "Optical Artifacts in Digital Video Microscopy". En Laser Science. Washington, D.C.: OSA, 2006. http://dx.doi.org/10.1364/ls.2006.lmh4.
Texto completoInformes sobre el tema "Digital laser"
Shamey, Renzo, Traci A. M. Lamar y Uikyung Jung. Digital Textile Printing with Laser Engraving: Surface Contour Modification and Color Properties. Ames (Iowa): Iowa State University. Library, enero de 2019. http://dx.doi.org/10.31274/itaa.9459.
Texto completoKomerath, N. M., O. D. Wong y R. Mahalingam. Tunable Solid-State Laser and High Resolution Digital Cameras for Lagrangian Vortex Imaging. Fort Belvoir, VA: Defense Technical Information Center, diciembre de 2000. http://dx.doi.org/10.21236/ada391255.
Texto completoMiles, Richard B. Development of Pulse-Burst Laser Source and Digital Image Processing for Measurements of High-Speed, Time-Evolving Flow. Fort Belvoir, VA: Defense Technical Information Center, agosto de 2000. http://dx.doi.org/10.21236/ada381328.
Texto completoMiles, Richard B. AASERT: Development of Pulse-Burst Laser Source and Digital Image Processing for Measurements of High-Speed, Time-Evolving Flow. Fort Belvoir, VA: Defense Technical Information Center, agosto de 2000. http://dx.doi.org/10.21236/ada383154.
Texto completoRandell. L51857 Evaluation of Digital Image Acquisition and Processing Technologies for Ground Movement Monitoring. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), enero de 2008. http://dx.doi.org/10.55274/r0011244.
Texto completoKubica, Stefan, Tobias Peuschke-Bischof, Belinda Müller y Robin Avci. Fahrmanöver für Geradeausfahrt. Technische Hochschule Wildau, 2019. http://dx.doi.org/10.15771/1264.
Texto completoLeón, Carlos. Digital Operational Resilience Act (DORA). FNA, julio de 2023. http://dx.doi.org/10.69701/deff9232.
Texto completoBaral, Aniruddha, Jeffery Roesler y Junryu Fu. Early-age Properties of High-volume Fly Ash Concrete Mixes for Pavement: Volume 2. Illinois Center for Transportation, septiembre de 2021. http://dx.doi.org/10.36501/0197-9191/21-031.
Texto completoMorneault, K., S. Rengasami, M. Kalla y G. Sidebottom. Integrated Services Digital Network (ISDN) Q.921-User Adaptation Layer. RFC Editor, enero de 2006. http://dx.doi.org/10.17487/rfc4233.
Texto completoGreen, Malcolm. Diamond-Shaped Semiconductor Ring Lasers for Analog to Digital Photonic Converters. Fort Belvoir, VA: Defense Technical Information Center, enero de 2004. http://dx.doi.org/10.21236/ada421293.
Texto completo