Índice
Literatura académica sobre el tema "Diffusio-Osmotic"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Diffusio-Osmotic".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Diffusio-Osmotic"
Lou, Xin, Rui Liu, Ke Chen, Xin Zhou, Rudolf Podgornik y Mingcheng Yang. "Diffusion of a chemically active colloidal particle in composite channels". Chinese Physics B 31, n.º 4 (1 de abril de 2022): 044704. http://dx.doi.org/10.1088/1674-1056/ac381b.
Texto completoMuraveva, Valeriia, Marek Bekir, Nino Lomadze, Robert Großmann, Carsten Beta y Svetlana Santer. "Interplay of diffusio- and thermo-osmotic flows generated by single light stimulus". Applied Physics Letters 120, n.º 23 (6 de junio de 2022): 231905. http://dx.doi.org/10.1063/5.0090229.
Texto completoMarbach, Sophie, Hiroaki Yoshida y Lydéric Bocquet. "Osmotic and diffusio-osmotic flow generation at high solute concentration. I. Mechanical approaches". Journal of Chemical Physics 146, n.º 19 (21 de mayo de 2017): 194701. http://dx.doi.org/10.1063/1.4982221.
Texto completoYoshida, Hiroaki, Sophie Marbach y Lydéric Bocquet. "Osmotic and diffusio-osmotic flow generation at high solute concentration. II. Molecular dynamics simulations". Journal of Chemical Physics 146, n.º 19 (21 de mayo de 2017): 194702. http://dx.doi.org/10.1063/1.4981794.
Texto completoSivasankar, Vishal Sankar, Mihirkumar Prajapati y Siddhartha Das. "Analytical solutions for nonionic and ionic diffusio-osmotic transport at soft and porous interfaces". Physics of Fluids 34, n.º 2 (febrero de 2022): 022102. http://dx.doi.org/10.1063/5.0076057.
Texto completoSchnitzer, Ory y Ehud Yariv. "Streaming-potential phenomena in the thin-Debye-layer limit. Part 3. Shear-induced electroviscous repulsion". Journal of Fluid Mechanics 786 (26 de noviembre de 2015): 84–109. http://dx.doi.org/10.1017/jfm.2015.647.
Texto completoBonthuis, Douwe Jan y Ramin Golestanian. "Mechanosensitive Channel Activation by Diffusio-Osmotic Force". Physical Review Letters 113, n.º 14 (29 de septiembre de 2014). http://dx.doi.org/10.1103/physrevlett.113.148101.
Texto completoVisan, Aura, Jeffery Alan Wood y Rob Lammertink. "Enhancing Conversion using Diffusio-Osmosis from Patterned Catalytic Surfaces". Industrial Chemistry & Materials, 2024. http://dx.doi.org/10.1039/d3im00130j.
Texto completoMonet, Geoffrey, Marie-Laure Bocquet y Lydéric Bocquet. "Unified non-equilibrium simulation methodology for flow through nanoporous carbon membrane". Journal of Chemical Physics 159, n.º 1 (5 de julio de 2023). http://dx.doi.org/10.1063/5.0146628.
Texto completoArya, Pooja, Maren Umlandt, Joachim Jelken, David Feldmann, Nino Lomadze, Evgeny S. Asmolov, Olga I. Vinogradova y Svetlana Santer. "Light-induced manipulation of passive and active microparticles". European Physical Journal E 44, n.º 4 (abril de 2021). http://dx.doi.org/10.1140/epje/s10189-021-00032-x.
Texto completoTesis sobre el tema "Diffusio-Osmotic"
Brahmi, Youcef. "Nouveau concept pour améliorer l'extraction d'énergie bleue par des couches capacitives". Electronic Thesis or Diss., Université Paris sciences et lettres, 2021. http://www.theses.fr/2021UPSLS099.
Texto completoTo effectively combat global warming, it is necessary to increase the production of clean, renewable energy. Solar, wind power, hydroelectric dams and tidal power plants are mature technologies. Increasing the production of this energy requires the use of energy sources that are little or not exploited like the blue energy which is the a less-known source with enormous potential that can be generated directly from the mixing of fresh and salt water. However, current processes for energy harvesting from salt gradients remain inefficient mainly because commercial selective membranes have poor performance as in the reverse electrodialysis or in the pressure retarded osmosis and still not economically viable. Hopes for nonselective membranes with charged nanofluidic channels which have been designed to reduce the internal resistance of the cell seem to be in vain. Here we present a novel solution that involves increasing the open circuit potential of the membrane by attaching tailored capacitive layers with negatively charged functional groups on the surface that adsorb ions, mainly the positive ones. Such a configuration allows us to double the potential of the open circuit of the cell without modifying too much the global ohmic resistance and thus to multiply by 4 the potentially recoverable power.After a thorough study carried out in order to characterize the process and an optimization of the energy consumption caused by the hydraulic pressure drop, we display a device of a few squared centimeters with only one membrane harvesting a net power density of 2 Watts per square meter of the membrane (estimated net potential power density 5.4 W.m−2 ) which makes the system economically viable
Palacci, Jérémie. "Manipulation of Colloids by Osmotic Forces". Phd thesis, Université Claude Bernard - Lyon I, 2010. http://tel.archives-ouvertes.fr/tel-00597477.
Texto completo