Siga este enlace para ver otros tipos de publicaciones sobre el tema: Differential equations.

Artículos de revistas sobre el tema "Differential equations"

Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros

Elija tipo de fuente:

Consulte los 50 mejores artículos de revistas para su investigación sobre el tema "Differential equations".

Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.

También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.

Explore artículos de revistas sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.

1

Tabor, Jacek. "Differential equations in metric spaces". Mathematica Bohemica 127, n.º 2 (2002): 353–60. http://dx.doi.org/10.21136/mb.2002.134163.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Andres, Jan y Pavel Ludvík. "Topological entropy and differential equations". Archivum Mathematicum, n.º 1 (2023): 3–10. http://dx.doi.org/10.5817/am2023-1-3.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Laksmikantham, V. "Set differential equations versus fuzzy differential equations". Applied Mathematics and Computation 164, n.º 2 (mayo de 2005): 277–94. http://dx.doi.org/10.1016/j.amc.2004.06.068.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Khakale, Savita Santu, Kailas Sahadu Ahire y Dinkar Pitambar Patil. "Soham Transform in Fractional Differential Equations". Indian Journal Of Science And Technology 17, n.º 33 (24 de agosto de 2024): 3481–87. http://dx.doi.org/10.17485/ijst/v17i33.1383.

Texto completo
Resumen
Objectives: Soham transforms is one of the appropriate tools for solving fractional differential equations that are flexible enough to adapt to different purposes. Methods: Integral transform methods help to simplify fractional differential equations into algebraic equations. Enable the use of classical methods to solve fractional differential equations. Findings: In this paper, the Soham transform can solve linear homogeneous and non-homogeneous Fractional Differential Equations with constant coefficients. Finally, we use this integral transform to obtain the analytical solution of non-homogeneous fractional differential equations. Novelty: The Soham transform method is a suitable and very effective tool for obtaining analytical solutions of fractional differential equations with constant coefficients. Soham Transform is more multipurpose as the Laplace transform is limited to fractional differential equations. Soham Transform is in the development stage. Keywords: Soham Transform, Fractional Differential Equations, Integral transforms, Reimann­ Liouville Fractional Integral, Caputo Fractional Derivative
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Parasidis, I. N. "EXTENSION AND DECOMPOSITION METHOD FOR DIFFERENTIAL AND INTEGRO-DIFFERENTIAL EQUATIONS". Eurasian Mathematical Journal 10, n.º 3 (2019): 48–67. http://dx.doi.org/10.32523/2077-9879-2019-10-3-48-67.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Saltas, Vassilios, Vassilios Tsiantos y Dimitrios Varveris. "Solving Differential Equations and Systems of Differential Equations with Inverse Laplace Transform". European Journal of Mathematics and Statistics 4, n.º 3 (14 de junio de 2023): 1–8. http://dx.doi.org/10.24018/ejmath.2023.4.3.192.

Texto completo
Resumen
The inverse Laplace transform enables the solution of ordinary linear differential equations as well as systems of ordinary linear differentials with applications in the physical and engineering sciences. The Laplace transform is essentially an integral transform which is introduced with the help of a suitable generalized integral. The ultimate goal of this work is to introduce the reader to some of the basic ideas and applications for solving initially ordinary differential equations and then systems of ordinary linear differential equations.
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Chrastinová, Veronika y Václav Tryhuk. "Parallelisms between differential and difference equations". Mathematica Bohemica 137, n.º 2 (2012): 175–85. http://dx.doi.org/10.21136/mb.2012.142863.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Tumajer, František. "Controllable systems of partial differential equations". Applications of Mathematics 31, n.º 1 (1986): 41–53. http://dx.doi.org/10.21136/am.1986.104183.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Kurzweil, Jaroslav y Alena Vencovská. "Linear differential equations with quasiperiodic coefficients". Czechoslovak Mathematical Journal 37, n.º 3 (1987): 424–70. http://dx.doi.org/10.21136/cmj.1987.102170.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Sergey, Piskarev y Siegmund Stefan. "UNSTABLE MANIFOLDS FOR FRACTIONAL DIFFERENTIAL EQUATIONS". Eurasian Journal of Mathematical and Computer Applications 10, n.º 3 (27 de septiembre de 2022): 58–72. http://dx.doi.org/10.32523/2306-6172-2022-10-3-58-72.

Texto completo
Resumen
We prove the existence of unstable manifolds for an abstract semilinear fractional differential equation Dαu(t) = Au(t) + f(u(t)), u(0) = u 0 , on a Banach space. We then develop a general approach to establish a semidiscrete approximation of unstable manifolds. The main assumption of our results are naturally satisfied. In particular, this is true for operators with compact resolvents and can be verified for finite elements as well as finite differences methods.
Los estilos APA, Harvard, Vancouver, ISO, etc.
11

Džurina, Jozef. "Comparison theorems for functional differential equations". Mathematica Bohemica 119, n.º 2 (1994): 203–11. http://dx.doi.org/10.21136/mb.1994.126077.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
12

Loud, Warren S., A. N. Tikhonov, A. B. Vasil'eva y A. G. Sveshnikov. "Differential Equations." American Mathematical Monthly 94, n.º 3 (marzo de 1987): 308. http://dx.doi.org/10.2307/2323408.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
13

Croft, Tony, D. A. Sanchez, R. C. Allen Jr. y W. T. Kyner. "Differential Equations". Mathematical Gazette 73, n.º 465 (octubre de 1989): 249. http://dx.doi.org/10.2307/3618470.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
14

Brindley, Graham, D. Lomen y J. Mark. "Differential Equations". Mathematical Gazette 73, n.º 466 (diciembre de 1989): 353. http://dx.doi.org/10.2307/3619335.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
15

Abbott, Steve y SMP. "Differential Equations". Mathematical Gazette 79, n.º 484 (marzo de 1995): 186. http://dx.doi.org/10.2307/3620064.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
16

Berkshire, Frank, A. N. Tikhonov, A. B. Vasil'eva y A. G. Sveshnikov. "Differential Equations". Mathematical Gazette 70, n.º 452 (junio de 1986): 168. http://dx.doi.org/10.2307/3615804.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
17

Lee, Tzong-Yow. "Differential Equations". Annals of Probability 29, n.º 3 (julio de 2001): 1047–60. http://dx.doi.org/10.1214/aop/1015345595.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
18

Barrett, K. E. "Differential equations". Applied Mathematical Modelling 11, n.º 3 (junio de 1987): 233–34. http://dx.doi.org/10.1016/0307-904x(87)90010-2.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
19

He, Ji-Huan y Zheng-Biao Li. "Converting fractional differential equations into partial differential equations". Thermal Science 16, n.º 2 (2012): 331–34. http://dx.doi.org/10.2298/tsci110503068h.

Texto completo
Resumen
A transform is suggested in this paper to convert fractional differential equations with the modified Riemann-Liouville derivative into partial differential equations, and it is concluded that the fractional order in fractional differential equations is equivalent to the fractal dimension.
Los estilos APA, Harvard, Vancouver, ISO, etc.
20

Knorrenschild, Michael. "Differential/Algebraic Equations As Stiff Ordinary Differential Equations". SIAM Journal on Numerical Analysis 29, n.º 6 (diciembre de 1992): 1694–715. http://dx.doi.org/10.1137/0729096.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
21

N O, Onuoha. "Transformation of Parabolic Partial Differential Equations into Heat Equation Using Hopf Cole Transform". International Journal of Science and Research (IJSR) 12, n.º 6 (5 de junio de 2023): 1741–43. http://dx.doi.org/10.21275/sr23612082710.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
22

MANOFF, S. "GEODESIC AND AUTOPARALLEL EQUATIONS OVER DIFFERENTIABLE MANIFOLDS". International Journal of Modern Physics A 11, n.º 21 (20 de agosto de 1996): 3849–74. http://dx.doi.org/10.1142/s0217751x96001814.

Texto completo
Resumen
The notions of ordinary, covariant and Lie differentials are considered as operators over differentiable manifolds with different (not only by sign) contravariant and covariant affine connections and metric. The difference between the interpretations of the ordinary differential as a covariant basic vector field and as a component of a contravariant vector field is discussed. By means of the covariant metric and the ordinary differential the notion of the line element is introduced and the geodesic equation is obtained and compared with the autoparallel equation.
Los estilos APA, Harvard, Vancouver, ISO, etc.
23

L Suresh, P. y Ch Satyanarayana. "Numerical Study of Higher Order Differential Equations Using Differential Transform Method". International Journal of Science and Research (IJSR) 11, n.º 9 (5 de septiembre de 2022): 1105–7. http://dx.doi.org/10.21275/sr22915122737.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
24

Lazopoulos, Konstantinos A. "On Λ-Fractional Differential Equations". Foundations 2, n.º 3 (5 de septiembre de 2022): 726–45. http://dx.doi.org/10.3390/foundations2030050.

Texto completo
Resumen
Λ-fractional differential equations are discussed since they exhibit non-locality and accuracy. Fractional derivatives form fractional differential equations, considered as describing better various physical phenomena. Nevertheless, fractional derivatives fail to satisfy the prerequisites of differential topology for generating differentials. Hence, all the sources of generating fractional differential equations, such as fractional differential geometry, the fractional calculus of variations, and the fractional field theory, are not mathematically accurate. Nevertheless, the Λ-fractional derivative conforms to all prerequisites demanded by differential topology. Hence, the various mathematical forms, including those derivatives, do not lack the mathematical accuracy or defects of the well-known fractional derivatives. A summary of the Λ-fractional analysis is presented with its influence on the sources of differential equations, such as fractional differential geometry, field theorems, and calculus of variations. Λ-fractional ordinary and partial differential equations will be discussed.
Los estilos APA, Harvard, Vancouver, ISO, etc.
25

Elishakoff, Isaac. "Differential Equations of Love and Love of Differential Equations". Journal of Humanistic Mathematics 9, n.º 2 (julio de 2019): 226–46. http://dx.doi.org/10.5642/jhummath.201902.15.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
26

Barles, Guy, Rainer Buckdahn y Etienne Pardoux. "Backward stochastic differential equations and integral-partial differential equations". Stochastics and Stochastic Reports 60, n.º 1-2 (febrero de 1997): 57–83. http://dx.doi.org/10.1080/17442509708834099.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
27

Marjona, Kosimova. "APPLICATION OF DIFFERENTIAL EQUATIONS IN VARIOUS FIELDS OF SCIENCE". American Journal of Applied Science and Technology 4, n.º 6 (1 de junio de 2024): 76–81. http://dx.doi.org/10.37547/ajast/volume04issue06-15.

Texto completo
Resumen
The article, "Application of Differential Equations in Various Fields of Science," explores the use of differential equations for modeling economic and natural phenomena. It examines two main models of economic dynamics: the Evans model for the market of a single product, and the Solow model for economic growth.The author emphasizes the importance of proving the existence of solutions to differential equations in order to verify the accuracy of mathematical models. They also discuss the role of electronic computers in developing the theory of differential equations and its connection with other branches of mathematics such as functional analysis, algebra, and probability theory.Furthermore, the article highlights the significance of various solution methods for differential equations, including the Fourier method, Ritz method, Galerkin method, and perturbation theory.Special attention is paid to the theory of partial differential equations, the theory of differential operators, and problems arising in physics, mechanics, and technology. Differential equations are the theoretical foundation of almost all scientific and technological models and a key tool for understanding various processes in science, such as in physics, chemistry, and biology.Examples of processes described by differential equations include normalreproduction, explosive growth, and the logistic curve. Cases of using differential equations to model deterministic, finite-dimensional, and differentiable phenomena, as well as the impact of catch quotas on population dynamics, are discussed.In conclusion, the significance of differential equations for research and their role in stimulating the development of new mathematical areas is emphasized.
Los estilos APA, Harvard, Vancouver, ISO, etc.
28

Frittelli, Simonetta, Carlos Kozameh y Ezra T. Newman. "Differential Geometry from Differential Equations". Communications in Mathematical Physics 223, n.º 2 (1 de octubre de 2001): 383–408. http://dx.doi.org/10.1007/s002200100548.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
29

Hino, Yoshiyuki y Taro Yoshizawa. "Total stability property in limiting equations for a functional-differential equation with infinite delay". Časopis pro pěstování matematiky 111, n.º 1 (1986): 62–69. http://dx.doi.org/10.21136/cpm.1986.118265.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
30

Chrastina, Jan. "On formal theory of differential equations. I." Časopis pro pěstování matematiky 111, n.º 4 (1986): 353–83. http://dx.doi.org/10.21136/cpm.1986.118285.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
31

Chrastina, Jan. "On formal theory of differential equations. II." Časopis pro pěstování matematiky 114, n.º 1 (1989): 60–105. http://dx.doi.org/10.21136/cpm.1989.118369.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
32

Li, Tongxing, Yuriy V. Rogovchenko y Chenghui Zhang. "Oscillation of fourth-order quasilinear differential equations". Mathematica Bohemica 140, n.º 4 (2015): 405–18. http://dx.doi.org/10.21136/mb.2015.144459.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
33

Kwapisz, Marian. "On solving systems of differential algebraic equations". Applications of Mathematics 37, n.º 4 (1992): 257–64. http://dx.doi.org/10.21136/am.1992.104508.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
34

Franců, Jan. "Weakly continuous operators. Applications to differential equations". Applications of Mathematics 39, n.º 1 (1994): 45–56. http://dx.doi.org/10.21136/am.1994.134242.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
35

Grace, S. R. y Bikkar S. Lalli. "Oscillation theorems for certain neutral differential equations". Czechoslovak Mathematical Journal 38, n.º 4 (1988): 745–53. http://dx.doi.org/10.21136/cmj.1988.102270.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
36

Ohriska, Ján. "Oscillation of differential equations and $v$-derivatives". Czechoslovak Mathematical Journal 39, n.º 1 (1989): 24–44. http://dx.doi.org/10.21136/cmj.1989.102276.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
37

Gopalsamy, K., B. S. Lalli y B. G. Zhang. "Oscillation of odd order neutral differential equations". Czechoslovak Mathematical Journal 42, n.º 2 (1992): 313–23. http://dx.doi.org/10.21136/cmj.1992.128330.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
38

Džurina, Jozef. "Comparison theorem for third-order differential equations". Czechoslovak Mathematical Journal 44, n.º 2 (1994): 357–66. http://dx.doi.org/10.21136/cmj.1994.128464.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
39

Grace, S. R. y B. S. Lalli. "Oscillation criteria for forced neutral differential equations". Czechoslovak Mathematical Journal 44, n.º 4 (1994): 713–24. http://dx.doi.org/10.21136/cmj.1994.128489.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
40

Fraňková, Dana. "Substitution method for generalized linear differential equations". Mathematica Bohemica 116, n.º 4 (1991): 337–59. http://dx.doi.org/10.21136/mb.1991.126028.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
41

Chrastina, Jan. "On formal theory of differential equations. III." Mathematica Bohemica 116, n.º 1 (1991): 60–90. http://dx.doi.org/10.21136/mb.1991.126196.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
42

Tiwari, Chinta Mani y Richa Yadav. "Distributional Solutions to Nonlinear Partial Differential Equations". International Journal of Research Publication and Reviews 5, n.º 4 (11 de abril de 2024): 6441–47. http://dx.doi.org/10.55248/gengpi.5.0424.1085.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
43

Freeman, J. S. y S. A. Velinsky. "Comparison of the Dynamics of Conventional and Worm-Gear Differentials". Journal of Mechanisms, Transmissions, and Automation in Design 111, n.º 4 (1 de diciembre de 1989): 605–10. http://dx.doi.org/10.1115/1.3259043.

Texto completo
Resumen
The differential mechanism has been used for many years and a variety of unique designs have been developed for particular applications. This paper investigates the performance of both the conventional bevel-gear differential and the worm-gear differential as used in vehicles. The worm-gear differential is a design in which the bevel gears of the conventional differential are replaced by worm gear/worm wheel pairs. The resultant differential exhibits some interesting behavior which has made this differential desirable for use in high performance and off-road vehicles. In this work, an Euler-Lagrange formulation of the equations of motion of the conventional and worm-gear differentials allows comparison of their respective behavior. Additionally, each differential is incorporated into a full vehicle model to observe their effects on gross vehicle response. The worm-gear differential is shown to exhibit the desirable characteristics of a limited-slip differential while maintaining the conventional differential’s ability to differentiate output shaft speeds at all power levels.
Los estilos APA, Harvard, Vancouver, ISO, etc.
44

Balamuralitharan, S. y . "MATLAB Programming of Nonlinear Equations of Ordinary Differential Equations and Partial Differential Equations". International Journal of Engineering & Technology 7, n.º 4.10 (2 de octubre de 2018): 773. http://dx.doi.org/10.14419/ijet.v7i4.10.26114.

Texto completo
Resumen
My idea of this paper is to discuss the MATLAB program for various mathematical modeling in ordinary differential equations (ODEs) and partial differential equations (PDEs). Idea of this paper is very useful to research scholars, faculty members and all other fields like engineering and biology. Also we get easily to find the numerical solutions from this program.
Los estilos APA, Harvard, Vancouver, ISO, etc.
45

Harir, Atimad, Said Melliani y Lalla Saadia Chadli. "Fuzzy Conformable Fractional Differential Equations". International Journal of Differential Equations 2021 (4 de febrero de 2021): 1–6. http://dx.doi.org/10.1155/2021/6655450.

Texto completo
Resumen
In this study, fuzzy conformable fractional differential equations are investigated. We study conformable fractional differentiability, and we define fractional integrability properties of such functions and give an existence and uniqueness theorem for a solution to a fuzzy fractional differential equation by using the concept of conformable differentiability. This concept is based on the enlargement of the class of differentiable fuzzy mappings; for this, we consider the lateral Hukuhara derivatives of order q ∈ 0,1 .
Los estilos APA, Harvard, Vancouver, ISO, etc.
46

Devaney, Robert L., Beverly West, Steven Strogatz, Jean Marie McDill y John Cantwell. "Interactive Differential Equations." American Mathematical Monthly 105, n.º 7 (agosto de 1998): 687. http://dx.doi.org/10.2307/2589275.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
47

Brauer, Fred, Vladimir I. Arnol'd y Roger Cook. "Ordinary Differential Equations." American Mathematical Monthly 100, n.º 8 (octubre de 1993): 810. http://dx.doi.org/10.2307/2324802.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
48

Hibberd, S., Richard Bellman y George Adomian. "Partial Differential Equations". Mathematical Gazette 71, n.º 458 (diciembre de 1987): 341. http://dx.doi.org/10.2307/3617100.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
49

Abbott, Steve y Lawrence C. Evans. "Partial Differential Equations". Mathematical Gazette 83, n.º 496 (marzo de 1999): 185. http://dx.doi.org/10.2307/3618751.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
50

Abram, J., W. E. Boyce y R. C. DiPrima. "Elementary Differential Equations". Mathematical Gazette 78, n.º 481 (marzo de 1994): 83. http://dx.doi.org/10.2307/3619457.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
Ofrecemos descuentos en todos los planes premium para autores cuyas obras están incluidas en selecciones literarias temáticas. ¡Contáctenos para obtener un código promocional único!

Pasar a la bibliografía