Artículos de revistas sobre el tema "Differential equations, Parabolic"

Siga este enlace para ver otros tipos de publicaciones sobre el tema: Differential equations, Parabolic.

Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros

Elija tipo de fuente:

Consulte los 50 mejores artículos de revistas para su investigación sobre el tema "Differential equations, Parabolic".

Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.

También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.

Explore artículos de revistas sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.

1

Bonafede, Salvatore y Salvatore A. Marano. "Implicit parabolic differential equations". Bulletin of the Australian Mathematical Society 51, n.º 3 (junio de 1995): 501–9. http://dx.doi.org/10.1017/s0004972700014349.

Texto completo
Resumen
Let QT = ω x (0, T), where ω is a bounded domain in ℝn (n ≥ 3) having the cone property and T is a positive real number; let Y be a nonempty, closed connected and locally connected subset of ℝh; let f be a real-valued function defined in QT × ℝh × ℝnh × Y; let ℒ be a linear, second order, parabolic operator. In this paper we establish the existence of strong solutions (n + 2 ≤ p < + ∞) to the implicit parabolic differential equationwith the homogeneus Cauchy-Dirichlet conditions where u = (u1, u2, …, uh), Dxu = (Dxu1, Dxu2, …, Dxuh), Lu = (ℒu1, ℒu2, … ℒuh).
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Ishii, Katsuyuki, Michel Pierre y Takashi Suzuki. "Quasilinear Parabolic Equations Associated with Semilinear Parabolic Equations". Mathematics 11, n.º 3 (2 de febrero de 2023): 758. http://dx.doi.org/10.3390/math11030758.

Texto completo
Resumen
We formulate a quasilinear parabolic equation describing the behavior of the global-in-time solution to a semilinear parabolic equation. We study this equation in accordance with the blow-up and quenching patterns of the solution to the original semilinear parabolic equation. This quasilinear equation is new in the theory of partial differential equations and presents several difficulties for mathematical analysis. Two approaches are examined: functional analysis and a viscosity solution.
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Rubio, Gerardo. "The Cauchy-Dirichlet Problem for a Class of Linear Parabolic Differential Equations with Unbounded Coefficients in an Unbounded Domain". International Journal of Stochastic Analysis 2011 (22 de junio de 2011): 1–35. http://dx.doi.org/10.1155/2011/469806.

Texto completo
Resumen
We consider the Cauchy-Dirichlet problem in [0,∞)×D for a class of linear parabolic partial differential equations. We assume that D⊂ℝd is an unbounded, open, connected set with regular boundary. Our hypotheses are unbounded and locally Lipschitz coefficients, not necessarily differentiable, with continuous data and local uniform ellipticity. We construct a classical solution to the nonhomogeneous Cauchy-Dirichlet problem using stochastic differential equations and parabolic differential equations in bounded domains.
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Selitskii, Anton. "ON SOLVABILITY OF PARABOLIC FUNCTIONAL DIFFERENTIAL EQUATIONS IN BANACH SPACES (II)". Eurasian Mathematical Journal 11, n.º 2 (2020): 86–92. http://dx.doi.org/10.32523/2077-9879-2020-11-2-86-92.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

BOUFOUSSI, B. y N. MRHARDY. "MULTIVALUED STOCHASTIC PARTIAL DIFFERENTIAL EQUATIONS VIA BACKWARD DOUBLY STOCHASTIC DIFFERENTIAL EQUATIONS". Stochastics and Dynamics 08, n.º 02 (junio de 2008): 271–94. http://dx.doi.org/10.1142/s0219493708002317.

Texto completo
Resumen
In this paper, we establish by means of Yosida approximation, the existence and uniqueness of the solution of a backward doubly stochastic differential equation whose coefficient contains the subdifferential of a convex function. We will use this result to prove the existence of stochastic viscosity solution for some multivalued parabolic stochastic partial differential equation.
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Walter, Wolfgang. "Nonlinear parabolic differential equations and inequalities". Discrete & Continuous Dynamical Systems - A 8, n.º 2 (2002): 451–68. http://dx.doi.org/10.3934/dcds.2002.8.451.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Prato, Giuseppe Da y Alessandra Lunardi. "Stabilizability of integro-differential parabolic equations". Journal of Integral Equations and Applications 2, n.º 2 (junio de 1990): 281–304. http://dx.doi.org/10.1216/jie-1990-2-2-281.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Dynkin, E. B. "Superdiffusions and Parabolic Nonlinear Differential Equations". Annals of Probability 20, n.º 2 (abril de 1992): 942–62. http://dx.doi.org/10.1214/aop/1176989812.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Hofmanová, Martina. "Degenerate parabolic stochastic partial differential equations". Stochastic Processes and their Applications 123, n.º 12 (diciembre de 2013): 4294–336. http://dx.doi.org/10.1016/j.spa.2013.06.015.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Blázquez, C. Miguel y Elías Tuma. "Saddle connections in parabolic differential equations". Proyecciones (Antofagasta) 13, n.º 1 (1994): 25–34. http://dx.doi.org/10.22199/s07160917.1994.0001.00005.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
11

Alicki, R. y D. Makowiec. "Functional integral for parabolic differential equations". Journal of Physics A: Mathematical and General 18, n.º 17 (1 de diciembre de 1985): 3319–25. http://dx.doi.org/10.1088/0305-4470/18/17/012.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
12

Ibragimov, N. H., S. V. Meleshko y E. Thailert. "Invariants of linear parabolic differential equations". Communications in Nonlinear Science and Numerical Simulation 13, n.º 2 (marzo de 2008): 277–84. http://dx.doi.org/10.1016/j.cnsns.2006.03.017.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
13

Chow, S. N., K. N. Lu y J. Malletparet. "Floquet Theory for Parabolic Differential Equations". Journal of Differential Equations 109, n.º 1 (abril de 1994): 147–200. http://dx.doi.org/10.1006/jdeq.1994.1047.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
14

Klevchuk, I. I. "Existence and stability of traveling waves in parabolic systems of differential equations with weak diffusion". Carpathian Mathematical Publications 14, n.º 2 (30 de diciembre de 2022): 493–503. http://dx.doi.org/10.15330/cmp.14.2.493-503.

Texto completo
Resumen
The aim of the present paper is to investigate of some properties of periodic solutions of a nonlinear autonomous parabolic systems with a periodic condition. We investigate parabolic systems of differential equations using an integral manifolds method of the theory of nonlinear oscillations. We prove the existence of periodic solutions in an autonomous parabolic system of differential equations with weak diffusion on the circle. We study the existence and stability of an arbitrarily large finite number of cycles for a parabolic system with weak diffusion. The periodic solution of parabolic equation is sought in the form of traveling wave. A representation of the integral manifold is obtained. We seek a solution of parabolic system with the periodic condition in the form of a Fourier series in the complex form and introduce a norm in the space of the coefficients in the Fourier expansion. We use the normal forms method in the general parabolic system of differential equations with retarded argument and weak diffusion. We use bifurcation theory for delay differential equations and quasilinear parabolic equations. The existence of periodic solutions in an autonomous parabolic system of differential equations on the circle with retarded argument and small diffusion is proved. The problems of existence and stability of traveling waves in the parabolic system with retarded argument and weak diffusion are investigated.
Los estilos APA, Harvard, Vancouver, ISO, etc.
15

Simon, László y Willi Jäger. "On non-uniformly parabolic functional differential equations". Studia Scientiarum Mathematicarum Hungarica 45, n.º 2 (1 de junio de 2008): 285–300. http://dx.doi.org/10.1556/sscmath.2007.1036.

Texto completo
Resumen
We consider initial boundary value problems for second order quasilinear parabolic equations where also the main part contains functional dependence on the unknown function and the equations are not uniformly parabolic. The results are generalizations of that of [10]
Los estilos APA, Harvard, Vancouver, ISO, etc.
16

Wang, Hanxiao. "Extended backward stochastic Volterra integral equations, Quasilinear parabolic equations, and Feynman–Kac formula". Stochastics and Dynamics 21, n.º 01 (11 de marzo de 2020): 2150004. http://dx.doi.org/10.1142/s0219493721500040.

Texto completo
Resumen
This paper is concerned with the relationship between backward stochastic Volterra integral equations (BSVIEs, for short) and a kind of non-local quasilinear (and possibly degenerate) parabolic equations. As a natural extension of BSVIEs, the extended BSVIEs (EBSVIEs, for short) are introduced and investigated. Under some mild conditions, the well-posedness of EBSVIEs is established and some regularity results of the adapted solution to EBSVIEs are obtained via Malliavin calculus. Then it is shown that a given function expressed in terms of the adapted solution to EBSVIEs uniquely solves a certain system of non-local parabolic equations, which generalizes the famous nonlinear Feynman–Kac formula in Pardoux–Peng [Backward stochastic differential equations and quasilinear parabolic partial differential equations, in Stochastic Partial Differential Equations and Their Applications (Springer, 1992), pp. 200–217].
Los estilos APA, Harvard, Vancouver, ISO, etc.
17

Bahuguna, D. y V. Raghavendra. "Rothe’s method to parabolic integra-differential equations via abstract integra-differential equations". Applicable Analysis 33, n.º 3-4 (enero de 1989): 153–67. http://dx.doi.org/10.1080/00036818908839869.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
18

Netka, Milena. "Differential difference inequalities related to parabolic functional differential equations". Opuscula Mathematica 30, n.º 1 (2010): 95. http://dx.doi.org/10.7494/opmath.2010.30.1.95.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
19

Shakhmurov, Veli. "Regularity properties of nonlocal fractional differential equations and applications". Georgian Mathematical Journal 29, n.º 2 (5 de febrero de 2022): 275–84. http://dx.doi.org/10.1515/gmj-2021-2128.

Texto completo
Resumen
Abstract The regularity properties of nonlocal fractional elliptic and parabolic equations in vector-valued Besov spaces are studied. The uniform B p , q s B_{p,q}^{s} -separability properties and sharp resolvent estimates are obtained for abstract elliptic operator in terms of fractional derivatives. In particular, it is proven that the fractional elliptic operator generated by these equations is sectorial and also is a generator of an analytic semigroup. Moreover, the maximal regularity properties of the nonlocal fractional abstract parabolic equation are established. As an application, the nonlocal anisotropic fractional differential equations and the system of nonlocal fractional parabolic equations are studied.
Los estilos APA, Harvard, Vancouver, ISO, etc.
20

Cywiak-Códova, D., G. Gutiérrez-Juárez y And M. Cywiak-Garbarcewicz. "Spectral generalized function method for solving homogeneous partial differential equations with constant coefficients". Revista Mexicana de Física E 17, n.º 1 Jan-Jun (28 de enero de 2020): 11. http://dx.doi.org/10.31349/revmexfise.17.11.

Texto completo
Resumen
A method based on a generalized function in Fourier space gives analytical solutions to homogeneous partial differential equations with constant coefficients of any order in any number of dimensions. The method exploits well-known properties of the Dirac delta, reducing the differential mathematical problem into the factorization of an algebraic expression that finally has to be integrated. In particular, the method was utilized to solve the most general homogeneous second order partial differential equation in Cartesian coordinates, finding a general solution for non-parabolic partial differential equations, which can be seen as a generalization of d'Alambert solution. We found that the traditional classification, i.e., parabolic, hyperbolic and elliptic, is not necessary reducing the classification to only parabolic and non-parabolic cases. We put special attention for parabolic partial differential equations, analyzing the general 1D homogeneous solution of the Photoacoustic and Photothermal equations in the frequency and time domain. Finally, we also used the method to solve Helmholtz equation in cylindrical coordinates, showing that it can be used in other coordinates systems.
Los estilos APA, Harvard, Vancouver, ISO, etc.
21

Kehaili, Abdelkader, Ali Hakem y Abdelkader Benali. "Homotopy Perturbation Transform method for solving the partial and the time-fractional differential equations with variable coefficients". Global Journal of Pure and Applied Sciences 26, n.º 1 (1 de junio de 2020): 35–55. http://dx.doi.org/10.4314/gjpas.v26i1.6.

Texto completo
Resumen
In this paper, we present the exact solutions of the Parabolic-like equations and Hyperbolic-like equations with variable coefficients, by using Homotopy perturbation transform method (HPTM). Finally, we extend the results to the time-fractional differential equations. Keywords: Caputo’s fractional derivative, fractional differential equations, homotopy perturbation transform method, hyperbolic-like equation, Laplace transform, parabolic-like equation.
Los estilos APA, Harvard, Vancouver, ISO, etc.
22

Matusik, Milena. "Iterative methods for parabolic functional differential equations". Applicationes Mathematicae 40, n.º 2 (2013): 221–35. http://dx.doi.org/10.4064/am40-2-5.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
23

Anikushyn, A. V. y A. L. Hulianytskyi. "Generalized solvability of parabolic integro-differential equations". Differential Equations 50, n.º 1 (enero de 2014): 98–109. http://dx.doi.org/10.1134/s0012266114010133.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
24

Lord, Gabriel J. y Tony Shardlow. "Postprocessing for Stochastic Parabolic Partial Differential Equations". SIAM Journal on Numerical Analysis 45, n.º 2 (enero de 2007): 870–89. http://dx.doi.org/10.1137/050640138.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
25

Garroni, Maria Giovanna y José Luis Menaldi. "Regularizing effect for integro-differential parabolic equations". Communications in Algebra 18, n.º 12 (1993): 2023–50. http://dx.doi.org/10.1080/00927879308824122.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
26

Gear, C. W. y Ioannis G. Kevrekidis. "Telescopic projective methods for parabolic differential equations". Journal of Computational Physics 187, n.º 1 (mayo de 2003): 95–109. http://dx.doi.org/10.1016/s0021-9991(03)00082-2.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
27

Atkinson, Kendall, Olaf Hansen y David Chien. "A spectral method for parabolic differential equations". Numerical Algorithms 63, n.º 2 (27 de julio de 2012): 213–37. http://dx.doi.org/10.1007/s11075-012-9620-8.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
28

Al Horani, Mohammed, Angelo Favini y Hiroki Tanabe. "Parabolic First and Second Order Differential Equations". Milan Journal of Mathematics 84, n.º 2 (27 de octubre de 2016): 299–315. http://dx.doi.org/10.1007/s00032-016-0260-7.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
29

Malek, St�phane. "Hypergeometric Functions and Parabolic Partial Differential Equations". Journal of Dynamical and Control Systems 11, n.º 2 (abril de 2005): 253–62. http://dx.doi.org/10.1007/s10883-005-4173-y.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
30

Simon, L. "On higher order parabolic functional differential equations". Periodica Mathematica Hungarica 31, n.º 1 (agosto de 1995): 53–62. http://dx.doi.org/10.1007/bf01876354.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
31

Zuur, E. A. H. "Time-step sequences for parabolic differential equations". Applied Numerical Mathematics 17, n.º 2 (mayo de 1995): 173–86. http://dx.doi.org/10.1016/0168-9274(95)00012-j.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
32

Bayer, Christian, Denis Belomestny, Martin Redmann, Sebastian Riedel y John Schoenmakers. "Solving linear parabolic rough partial differential equations". Journal of Mathematical Analysis and Applications 490, n.º 1 (octubre de 2020): 124236. http://dx.doi.org/10.1016/j.jmaa.2020.124236.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
33

Lefton, L. E. y V. L. Shapiro. "Resonance and Quasilinear Parabolic Partial Differential Equations". Journal of Differential Equations 101, n.º 1 (enero de 1993): 148–77. http://dx.doi.org/10.1006/jdeq.1993.1009.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
34

Turkyilmazoglu, M. "Parabolic Partial Differential Equations with Nonlocal Initial and Boundary Values". International Journal of Computational Methods 12, n.º 05 (octubre de 2015): 1550024. http://dx.doi.org/10.1142/s0219876215500243.

Texto completo
Resumen
Parabolic partial differential equations possessing nonlocal initial and boundary specifications are used to model some real-life applications. This paper focuses on constructing fast and accurate analytic approximations via an easy, elegant and powerful algorithm based on a double power series representation of the solution via ordinary polynomials. Consequently, a parabolic partial differential equation is reduced to a system involving algebraic equations. Exact solutions are obtained when the solutions are themselves polynomials. Some parabolic partial differential equations are treated by the technique to judge its validity and also to measure its accuracy as compared to the existing methods.
Los estilos APA, Harvard, Vancouver, ISO, etc.
35

Barletta, Giuseppina. "Parabolic equations with discontinuous nonlinearities". Bulletin of the Australian Mathematical Society 63, n.º 2 (abril de 2001): 219–28. http://dx.doi.org/10.1017/s0004972700019286.

Texto completo
Resumen
In this paper we deal with the homogeneous Cauchy-Dirichlet problem for a class of parabolic equations with either Carathéodory or discontinuous nonlinear terms. We then present an application and explicitly point out an existence result for a differential inclusion, which can be applied to the classical Stefan problem.
Los estilos APA, Harvard, Vancouver, ISO, etc.
36

M. El-Borai, Mahmoud, Hamed Kamal Awad y Randa Hamdy M. Ali. "Method of Averaging for Some Parabolic Partial Differential Equations". Academic Journal of Applied Mathematical Sciences, n.º 61 (25 de enero de 2020): 1–4. http://dx.doi.org/10.32861/ajams.61.1.4.

Texto completo
Resumen
Quantitative and qualitative analysis of the Averaging methods for the parabolic partial differential equation appears as an exciting field of the investigation. In this paper, we generalize some known results due to Krol on the averaging methods and use them to solve the parabolic partial differential equation.
Los estilos APA, Harvard, Vancouver, ISO, etc.
37

Truman, Aubrey, FengYu Wang, JiangLun Wu y Wei Yang. "A link of stochastic differential equations to nonlinear parabolic equations". Science China Mathematics 55, n.º 10 (9 de agosto de 2012): 1971–76. http://dx.doi.org/10.1007/s11425-012-4463-2.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
38

R.Ramesh Rao, T. "Numerical Solution of Time Fractional Parabolic Differential Equations". International Journal of Engineering & Technology 7, n.º 4.10 (2 de octubre de 2018): 790. http://dx.doi.org/10.14419/ijet.v7i4.10.26117.

Texto completo
Resumen
In this paper, we study the coupling of an approximate analytical technique called reduced differential transform (RDT) with fractional complex transform. The present method reduces the time fractional differential equations in to integer order differential equations. The fractional derivatives are defined in Jumaries modified Riemann-Liouville sense. Result shows that the present technique is effective and powerful for handling the fractional order differential equations.
Los estilos APA, Harvard, Vancouver, ISO, etc.
39

Lee, Min Ho. "Mixed automorphic forms and differential equations". International Journal of Mathematics and Mathematical Sciences 13, n.º 4 (1990): 661–68. http://dx.doi.org/10.1155/s0161171290000916.

Texto completo
Resumen
We construct mixed automorphic forms associated to a certain class of nonhomogeneous linear ordinary differential equations. We also establish an isomorphism between the space of mixed automorphic forms of the second kind modulo exact forms nd a certain parabolic cohomology explicitly in terms of the periods of mixed automorphic forms.
Los estilos APA, Harvard, Vancouver, ISO, etc.
40

Qahremani, E., T. Allahviranloo, S. Abbasbandy y N. Ahmady. "A study on the fuzzy parabolic Volterra partial integro-differential equations". Journal of Intelligent & Fuzzy Systems 40, n.º 1 (4 de enero de 2021): 1639–54. http://dx.doi.org/10.3233/jifs-201125.

Texto completo
Resumen
This paper is concerned with aspects of the analytical fuzzy solutions of the parabolic Volterra partial integro-differential equations under generalized Hukuhara partial differentiability and it consists of two parts. The first part of this paper deals with aspects of background knowledge in fuzzy mathematics, with emphasis on the generalized Hukuhara partial differentiability. The existence and uniqueness of the solutions of the fuzzy Volterra partial integro-differential equations by considering the type of [gH - p]-differentiability of solutions are proved in this part. The second part is concerned with the central themes of this paper, using the fuzzy Laplace transform method for solving the fuzzy parabolic Volterra partial integro-differential equations with emphasis on the type of [gH - p]-differentiability of solution. We test the effectiveness of method by solving some fuzzy Volterra partial integro-differential equations of parabolic type.
Los estilos APA, Harvard, Vancouver, ISO, etc.
41

Hensel, Edward. "Inverse Problems for Multi-Dimensional Parabolic Partial Differential Equations". Applied Mechanics Reviews 41, n.º 6 (1 de junio de 1988): 263–69. http://dx.doi.org/10.1115/1.3151898.

Texto completo
Resumen
The parabolic inverse boundary value problem is defined, and the major characteristics common to multi-dimensional parabolic inverse problems are discussed. These include sensitivity to measurement error and noise, the value of future time information, the nonuniqueness of estimates, and the effects of temperature dependent thermal properties. The importance of quantifying resolution degradation and estimate variances is discussed.
Los estilos APA, Harvard, Vancouver, ISO, etc.
42

Topolski, Krzysztof A. "On the existence of classical solutions for differential-functional IBVP". Abstract and Applied Analysis 3, n.º 3-4 (1998): 363–75. http://dx.doi.org/10.1155/s1085337598000608.

Texto completo
Resumen
We consider the initial-boundary value problem for second order differential-functional equations of parabolic type. Functional dependence in the equation is of the Hale type. By using Leray-Schauder theorem we prove the existence of classical solutions. Our formulation and results cover a large class of parabolic problems both with a deviated argument and integro-differential equations.
Los estilos APA, Harvard, Vancouver, ISO, etc.
43

Hu, Zhanrong y Zhen Jin. "Almost Automorphic Mild Solutions to Neutral Parabolic Nonautonomous Evolution Equations with Nondense Domain". Discrete Dynamics in Nature and Society 2013 (2013): 1–10. http://dx.doi.org/10.1155/2013/183420.

Texto completo
Resumen
Combining the exponential dichotomy of evolution family, composition theorems for almost automorphic functions with Banach fixed point theorem, we establish new existence and uniqueness theorems for almost automorphic mild solutions to neutral parabolic nonautonomous evolution equations with nondense domain. A unified framework is set up to investigate the existence and uniqueness of almost automorphic mild solutions to some classes of parabolic partial differential equations and neutral functional differential equations.
Los estilos APA, Harvard, Vancouver, ISO, etc.
44

Shakhmurov, Veli B. "Maximal regular boundary value problems in Banach-valued function spaces and applications". International Journal of Mathematics and Mathematical Sciences 2006 (2006): 1–26. http://dx.doi.org/10.1155/ijmms/2006/92134.

Texto completo
Resumen
The nonlocal boundary value problems for differential operator equations of second order with dependent coefficients are studied. The principal parts of the differential operators generated by these problems are non-selfadjoint. Several conditions for the maximal regularity and the Fredholmness in Banach-valuedLp-spaces of these problems are given. By using these results, the maximal regularity of parabolic nonlocal initial boundary value problems is shown. In applications, the nonlocal boundary value problems for quasi elliptic partial differential equations, nonlocal initial boundary value problems for parabolic equations, and their systems on cylindrical domain are studied.
Los estilos APA, Harvard, Vancouver, ISO, etc.
45

Ameer, Zainab Abdel y Sameer Qasim Hasan. "Solution of Parabolic Differential Equations with Dirichlet Control Boundary problem". Journal of Physics: Conference Series 2322, n.º 1 (1 de agosto de 2022): 012047. http://dx.doi.org/10.1088/1742-6596/2322/1/012047.

Texto completo
Resumen
Abstract In this paper we study a system of two degenerate parabolic equations which defined in a bounded domain. Using concepts of parabolic for finding existence of the solutions of the Dirichlet control boundary problem and the existence of Periodic time-solutions were achieved with results presented in detail for the proposed system.
Los estilos APA, Harvard, Vancouver, ISO, etc.
46

Ruiz, Francisco J. y Jose L. Torrea. "Parabolic differential equations and vector-valued Fourier analysis". Colloquium Mathematicum 58, n.º 1 (1989): 61–75. http://dx.doi.org/10.4064/cm-58-1-61-75.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
47

Kinnunen, Juha y Olli Saari. "Parabolic weighted norm inequalities and partial differential equations". Analysis & PDE 9, n.º 7 (7 de noviembre de 2016): 1711–36. http://dx.doi.org/10.2140/apde.2016.9.1711.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
48

Arrigo, Daniel J. y Fred Hickling. "Darboux transformations and linear parabolic partial differential equations". Journal of Physics A: Mathematical and General 35, n.º 28 (5 de julio de 2002): L389—L399. http://dx.doi.org/10.1088/0305-4470/35/28/101.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
49

Abasheeva, N. y A. Lorenzi. "Identification problems for nonclassical integro-differential parabolic equations". Journal of Inverse and Ill-posed Problems 13, n.º 6 (noviembre de 2005): 513–35. http://dx.doi.org/10.1515/156939405775199523.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
50

Vlasenko, L. A. "Solvability of Degenerate Semilinear Parabolic Functional Differential Equations". Nonlinear Oscillations 6, n.º 3 (julio de 2003): 313–26. http://dx.doi.org/10.1023/b:nono.0000016410.98431.ff.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
Ofrecemos descuentos en todos los planes premium para autores cuyas obras están incluidas en selecciones literarias temáticas. ¡Contáctenos para obtener un código promocional único!

Pasar a la bibliografía