Tesis sobre el tema "Differential Equation Method de Wormald"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte los 50 mejores tesis para su investigación sobre el tema "Differential Equation Method de Wormald".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Explore tesis sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.
Aliou, Diallo Aoudi Mohamed Habib. "Local matching algorithms on the configuration model". Electronic Thesis or Diss., Compiègne, 2023. http://www.theses.fr/2023COMP2742.
Texto completoThe present thesis constructs an alternative framework to online matching algorithms on large graphs. Using the configuration model to mimic the degree distributions of large networks, we are able to build algorithms based on local matching policies for nodes. Thus, we are allowed to predict and approximate the performances of a class of matching policies given the degree distributions of the initial network. Towards this goal, we use a generalization of the differential equation method to measure valued processes. Through-out the text, we provide simulations and a comparison to the seminal work of Karp, Vazirani and Vazirani based on the prevailing viewpoint in online bipartite matching
Akman, Makbule. "Differential Quadrature Method For Time-dependent Diffusion Equation". Master's thesis, METU, 2003. http://etd.lib.metu.edu.tr/upload/1224559/index.pdf.
Texto completoShedlock, Andrew James. "A Numerical Method for solving the Periodic Burgers' Equation through a Stochastic Differential Equation". Thesis, Virginia Tech, 2021. http://hdl.handle.net/10919/103947.
Texto completoMaster of Science
Burgers equation is a Partial Differential Equation (PDE) used to model how fluids evolve in time based on some initial condition and viscosity parameter. This viscosity parameter helps describe how the energy in a fluid dissipates. When studying partial differential equations, it is often hard to find a closed form solution to the problem, so we often approximate the solution with numerical methods. As our viscosity parameter approaches 0, many numerical methods develop problems and may no longer accurately compute the solution. Using random variables, we develop an approximation algorithm and test our numerical method on various types of initial conditions with small viscosity coefficients.
Kurus, Gulay. "Solution Of Helmholtz Type Equations By Differential Quadarature Method". Master's thesis, METU, 2000. http://etd.lib.metu.edu.tr/upload/2/12605383/index.pdf.
Texto completoYang, Zhengzheng. "Nonlocally related partial differential equation systems, the nonclassical method and applications". Thesis, University of British Columbia, 2013. http://hdl.handle.net/2429/44993.
Texto completoTemimi, Helmi. "A Discontinuous Galerkin Method for Higher-Order Differential Equations Applied to the Wave Equation". Diss., Virginia Tech, 2008. http://hdl.handle.net/10919/26454.
Texto completoPh. D.
Krueger, Justin Michael. "Parameter Estimation Methods for Ordinary Differential Equation Models with Applications to Microbiology". Diss., Virginia Tech, 2017. http://hdl.handle.net/10919/78674.
Texto completoPh. D.
Mbroh, Nana Adjoah. "On the method of lines for singularly perturbed partial differential equations". University of the Western Cape, 2017. http://hdl.handle.net/11394/5679.
Texto completoMany chemical and physical problems are mathematically described by partial differential equations (PDEs). These PDEs are often highly nonlinear and therefore have no closed form solutions. Thus, it is necessary to recourse to numerical approaches to determine suitable approximations to the solution of such equations. For solutions possessing sharp spatial transitions (such as boundary or interior layers), standard numerical methods have shown limitations as they fail to capture large gradients. The method of lines (MOL) is one of the numerical methods used to solve PDEs. It proceeds by the discretization of all but one dimension leading to systems of ordinary di erential equations. In the case of time-dependent PDEs, the MOL consists of discretizing the spatial derivatives only leaving the time variable continuous. The process results in a system to which a numerical method for initial value problems can be applied. In this project we consider various types of singularly perturbed time-dependent PDEs. For each type, using the MOL, the spatial dimensions will be discretized in many different ways following fitted numerical approaches. Each discretisation will be analysed for stability and convergence. Extensive experiments will be conducted to confirm the analyses.
Janssen, Micha. "A Constraint Satisfaction Approach for Enclosing Solutions to Initial Value Problems for Parametric Ordinary Differential Equations". Université catholique de Louvain, 2001. http://edoc.bib.ucl.ac.be:81/ETD-db/collection/available/BelnUcetd-11042002-155822/.
Texto completoRockstroh, Parousia. "Boundary value problems for the Laplace equation on convex domains with analytic boundary". Thesis, University of Cambridge, 2018. https://www.repository.cam.ac.uk/handle/1810/273939.
Texto completoLarsson, Stig. "On reaction-diffusion equation and their approximation by finite element methods /". Göteborg : Chalmers tekniska högskola, Dept. of Mathematics, 1985. http://bibpurl.oclc.org/web/32831.
Texto completoKhavanin, Mohammad. "The Method of Mixed Monotony and First Order Delay Differential Equations". Pontificia Universidad Católica del Perú, 2014. http://repositorio.pucp.edu.pe/index/handle/123456789/96643.
Texto completoEn este artículo se prueba una generalización del método de monotonía mixta, para construir sucesiones monótonas que convergen a la solución única de una ecuación diferencial de retraso con valor inicial.
Macias, Diaz Jorge. "A Numerical Method for Computing Radially Symmetric Solutions of a Dissipative Nonlinear Modified Klein-Gordon Equation". ScholarWorks@UNO, 2004. http://scholarworks.uno.edu/td/167.
Texto completoYang, Jie. "Solving Partial Differential Equations by Taylor Meshless Method". Thesis, Université de Lorraine, 2018. http://www.theses.fr/2018LORR0032/document.
Texto completoBased on Taylor Meshless Method (TMM), the aim of this thesis is to develop a simple, robust, efficient and accurate numerical method which is capable of solving large scale engineering problems and to provide a new idea for the follow-up study on meshless methods. To this end, the influence of the key factors in TMM has been studied by solving three-dimensional and non-linear Partial Differential Equations (PDEs). The main idea of TMM is to use high order polynomials as shape functions which are approximated solutions of the PDE and the discretization concerns only the boundary. To solve the unknown coefficients, boundary conditions are accounted by collocation procedures associated with least-square method. TMM that needs only boundary collocation without integration process, is a true meshless method. The main contributions of this thesis are as following: 1) Based on TMM, a general and efficient algorithm has been developed for solving three-dimensional PDEs; 2) Three coupling techniques in piecewise resolutions have been discussed and tested in cases of large-scale problems, including least-square collocation method and two coupling methods based on Lagrange multipliers; 3) A general numerical method for solving non-linear PDEs has been proposed by combining Newton Method, TMM and Automatic Differentiation technique; 4) To apply TMM for solving problems with singularities, the singular solutions satisfying the control equation are introduced as complementary shape functions, which provides a theoretical basis for solving singular problems
Sundqvist, Per. "Numerical Computations with Fundamental Solutions". Doctoral thesis, Uppsala : Acta Universitatis Upsaliensis : Univ.-bibl. [distributör], 2005. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-5757.
Texto completoGuffey, Stephen. "Application of a Numerical Method and Optimal Control Theory to a Partial Differential Equation Model for a Bacterial Infection in a Chronic Wound". TopSCHOLAR®, 2015. https://digitalcommons.wku.edu/theses/1494.
Texto completoYevik, Andrei. "Numerical approximations to the stationary solutions of stochastic differential equations". Thesis, Loughborough University, 2011. https://dspace.lboro.ac.uk/2134/7777.
Texto completoAl-Jawary, Majeed Ahmed Weli. "The radial integration boundary integral and integro-differential equation methods for numerical solution of problems with variable coefficients". Thesis, Brunel University, 2012. http://bura.brunel.ac.uk/handle/2438/6449.
Texto completoDvořáková, Stanislava. "The Qualitative and Numerical Analysis of Nonlinear Delay Differential Equations". Doctoral thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2011. http://www.nusl.cz/ntk/nusl-233952.
Texto completoZhou, Bo. "The existence of bistable stationary solutions of random dynamical systems generated by stochastic differential equations and random difference equations". Thesis, Loughborough University, 2009. https://dspace.lboro.ac.uk/2134/14255.
Texto completoUgail, Hassan. "Method of trimming PDE surfaces". Elsevier, 2006. http://hdl.handle.net/10454/2648.
Texto completoJocas, Aivaras. "Kraštinio uždavinio paprastajai antros eilės diferencialinei lygčiai suvedimas į integralinę lygtį". Bachelor's thesis, Lithuanian Academic Libraries Network (LABT), 2012. http://vddb.laba.lt/obj/LT-eLABa-0001:E.02~2012~D_20120702_123832-53027.
Texto completoIn this work is analyzed second-order differential equation. I use factorization method and other traditional ordinary differential equations approaches as an example: independent variable exchange method, variation of constants method and direct integration, to find solutions of the equation.
Luo, Ye. "Random periodic solutions of stochastic functional differential equations". Thesis, Loughborough University, 2014. https://dspace.lboro.ac.uk/2134/16112.
Texto completoMaciel, Luiz Maurílio da Silva. "Optical flow computation using wave equation based energy". Universidade Federal de Juiz de Fora (UFJF), 2014. https://repositorio.ufjf.br/jspui/handle/ufjf/4823.
Texto completoApproved for entry into archive by Adriana Oliveira (adriana.oliveira@ufjf.edu.br) on 2017-06-06T12:17:02Z (GMT) No. of bitstreams: 1 luizmauriliodasilvamaciel.pdf: 11082986 bytes, checksum: ce05919ae5e2bd37882838427a25f4a3 (MD5)
Made available in DSpace on 2017-06-06T12:17:02Z (GMT). No. of bitstreams: 1 luizmauriliodasilvamaciel.pdf: 11082986 bytes, checksum: ce05919ae5e2bd37882838427a25f4a3 (MD5) Previous issue date: 2014-02-27
CAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
Identificar movimento em vídeos é uma tarefa fundamental a fim de analisar a sua infor-mação semântica. Uma das principais ferramentas para a identificação de movimento é o fluxo óptico, o qual estima a projeção da velocidade 3D dos objetos sobre o plano da câmera. Neste trabalho é proposto um método diferencial de fluxo óptico baseado na equação da onda. O fluxo óptico é calculado através da minimização de funcional de energia composto por dois termos: um termo de constância de brilho e um termo de energia da onda. O fluxo é então determinado através da resolução iterativa de um sistema de equações lineares. O desacoplamento entre os pixels na solução garante convergência rápida e torna o método adequado para a paralelização. No entanto, nossa abordagem não converge para todos os pontos de imagem, sendo apresentadas as suas condições de convergência. O fluxo proposto é aplicado no problema de reconhecimento de ação através da criação de um descritor global de vídeo baseado em histogramas de fluxo óptico (HOF). Apesar da sua esparsidade, o método proposto supera as abordagens clássicas. Também são avaliadas medidas de erro de fluxo óptico para algumas sequências de imagens conhecidas. Os erros encontrados são similares para o nosso método e as abordagens clássicas de fluxo óptico.
Identification of motion in videos is a fundamental task to analyse their semantic informa-tion. One of the main tools for motion identification is the optical flow, which estimates the projection of the 3D velocity of the objects onto the plane of the camera. In this work, we propose a differential optical flow method based on the wave equation. The optical flow is computed by minimizing a functional energy composed by two terms: brightness constancy and energy of the wave. The flow is then determined by solving iteratively a system of linear equations. The decoupling of the pixels in the solution ensures quick convergence and makes the method suitable for parallelization. However, our approach does not converge for all the image points and we present its convergence conditions. We apply our optical flow in the action recognition problem by creating a global video descriptor based on histograms of optical flow (HOF). Despite its sparsity, our method outperforms the classical approaches. We also evaluate optical flow error measures for some known image sequences. The errors found are similar for our method and the classical optical flow approaches.
Auffredic, Jérémy. "A second order Runge–Kutta method for the Gatheral model". Thesis, Mälardalens högskola, Akademin för utbildning, kultur och kommunikation, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:mdh:diva-49170.
Texto completoLi, Boning. "Extending the scaled boundary finite-element method to wave diffraction problems". University of Western Australia. School of Civil and Resource Engineering, 2007. http://theses.library.uwa.edu.au/adt-WU2007.0173.
Texto completoXie, Chunmei. "An efficient method for the calculation of the free-surface Green function using ordinary differential equations". Thesis, Ecole centrale de Nantes, 2019. http://www.theses.fr/2019ECDN0013/document.
Texto completoThe boundary element method (BEM) with constant panels is a common approach for wave-structure interaction problems. It is based on the linear potential-flow theory. It relies on the frequency-domain free-surface Green function, which is the focus of this thesis. First, the mathematical expressions and numerical methods for the frequency-domain free-surface Green function are investigated. Twelve different expressions are reviewed and analyzed. Several existing numerical methods are compared including their computational time and accuracies. Then, a series of ordinary differential equations (ODEs) for the time-domain and frequency-domain free-surface Green functions and their derivatives are derived. These ODEs can be used to better understand the properties of the Green function and can be an alternative way to calculate the Green functions and their derivatives. However, it is challenging to solve the ODEs for the frequency-domain Green function with initial conditions at the origin due to the singularity. This difficulty is removed by modifying the ODEs by using new functions free of singularity. The new ODEs are then transformed in their canonic form by using a novel definition of the vector functions. The canonic form can be solved with the initial conditions at the origin since all involved terms are finite. An expansion method based on series of logarithmic function together with ordinary polynomials which is very efficient for low frequency problems is also developed to obtain analytical solutions. Finally, the ODE-based method to calculate the Green function is implemented and an efficient BEM solver is obtained. The removal of irregular frequencies is included. The new solver is validated by comparison of hydrodynamic coefficients to analytical solutions for a heaving and surging hemisphere, and to numerical results obtained with a commercial solver for a box barge and the KCS container ship
Kondo, Naoya, Kimihiro Umemura, Liren Zhou y Hideyuki Azegami. "Shape optimization for a link mechanism". Springer, 2013. http://hdl.handle.net/2237/21125.
Texto completoDokchan, Rakporn. "Numerical integration of differential-algebraic equations with harmless critical points". Doctoral thesis, Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät II, 2011. http://dx.doi.org/10.18452/16318.
Texto completoDifferential-algebraic equations (DAEs) are implicit singular ordinary differential equations, which describe dynamical processes that are restricted by some constraints. In contrast to explicit regular ordinary differential equations, for a DAE not any value can be imposed as an initial condition. Furthermore, DAEs involve not only integration problems but also differentiation problems. The differentiation index of a DAE indicates the number of differentiations required in order to solve a DAE. Since the 1980th, research focuses primarily on the characterization and classification of regular problem classes and the construction and foundation of integration methods for simulation software. I. Higueras, R. Maerz, and C. Tischendorf have shown that one can reliably integrate a general linear DAE with a properly stated leading term, A(t)(D(t)x(t))'' + B(t)x(t) = q(t), which is regular with tractability index 2 - in contrast to linear standard form DAEs. The first classification of critical points of linear DAEs has been published by R. Riaza and R. Maerz. Based on the tractability index, critical points are classified according to failures of certain rank conditions of matrix functions. Essentially, a critical point is said to be harmless, if the flow described by the inherent differential equation is not affected. The subject of this work are quasi-proper linear DAEs. Index-2 DAEs with harmless critical points are characterized. Under the application of quasi-admissible projector functions. Besides DAEs which have almost everywhere the same characteristic values, DAEs with index changes can now be discussed for the first time. The main part of the work is to provide a proof of feasibility, convergence, and only weak instability of numerical integration methods (BDF, IRK (DAE)) for linear index-2 DAEs with harmless critical points, as well as the development and testing of error estimators and stepsize control.
Jornet, Sanz Marc. "Mean square solutions of random linear models and computation of their probability density function". Doctoral thesis, Universitat Politècnica de València, 2020. http://hdl.handle.net/10251/138394.
Texto completo[ES] Esta tesis trata el análisis de ecuaciones diferenciales con parámetros de entrada aleatorios, en la forma de variables aleatorias o procesos estocásticos con cualquier tipo de distribución de probabilidad. En modelización, los coeficientes de entrada se fijan a partir de datos experimentales, los cuales suelen acarrear incertidumbre por los errores de medición. Además, el comportamiento del fenómeno físico bajo estudio no sigue patrones estrictamente deterministas. Es por tanto más realista trabajar con modelos matemáticos con aleatoriedad en su formulación. La solución, considerada en el sentido de caminos aleatorios o en el sentido de media cuadrática, es un proceso estocástico suave, cuya incertidumbre se tiene que cuantificar. La cuantificación de la incertidumbre es a menudo llevada a cabo calculando los principales estadísticos (esperanza y varianza) y, si es posible, la función de densidad de probabilidad. En este trabajo, estudiamos modelos aleatorios lineales, basados en ecuaciones diferenciales ordinarias con y sin retardo, y en ecuaciones en derivadas parciales. La estructura lineal de los modelos nos permite buscar ciertas soluciones probabilísticas e incluso aproximar su función de densidad de probabilidad, lo cual es un objetivo complicado en general. Una parte muy importante de la disertación se dedica a las ecuaciones diferenciales lineales de segundo orden aleatorias, donde los coeficientes de la ecuación son procesos estocásticos y las condiciones iniciales son variables aleatorias. El estudio de esta clase de ecuaciones diferenciales en el contexto aleatorio está motivado principalmente por su importante papel en la Física Matemática. Empezamos resolviendo la ecuación diferencial de Legendre aleatorizada en el sentido de media cuadrática, lo que permite la aproximación de la esperanza y la varianza de la solución estocástica. La metodología se extiende al caso general de ecuaciones diferenciales lineales de segundo orden aleatorias con coeficientes analíticos (expresables como series de potencias), mediante el conocido método de Fröbenius. Se lleva a cabo un estudio comparativo con métodos espectrales basados en expansiones de caos polinomial. Por otro lado, el método de Fröbenius junto con la simulación de Monte Carlo se utilizan para aproximar la función de densidad de probabilidad de la solución. Para acelerar el procedimiento de Monte Carlo, se proponen varios métodos de reducción de la varianza basados en reglas de cuadratura y estrategias multinivel. La última parte sobre ecuaciones diferenciales lineales de segundo orden aleatorias estudia un problema aleatorio de tipo Poisson de difusión-reacción, en el que la función de densidad de probabilidad es aproximada mediante un esquema numérico de diferencias finitas. En la tesis también se tratan ecuaciones diferenciales ordinarias aleatorias con retardo discreto y constante. Estudiamos el caso lineal y autónomo, cuando el coeficiente de la componente no retardada i el parámetro del término retardado son ambos variables aleatorias mientras que la condición inicial es un proceso estocástico. Se demuestra que la solución determinista construida con el método de los pasos y que involucra la función exponencial retardada es una solución probabilística en el sentido de Lebesgue. Finalmente, el último capítulo lo dedicamos a la ecuación en derivadas parciales lineal de advección, sujeta a velocidad y condición inicial estocásticas. Resolvemos la ecuación en el sentido de media cuadrática y damos nuevas expresiones para la función de densidad de probabilidad de la solución, incluso en el caso de velocidad no Gaussiana.
[CAT] Aquesta tesi tracta l'anàlisi d'equacions diferencials amb paràmetres d'entrada aleatoris, en la forma de variables aleatòries o processos estocàstics amb qualsevol mena de distribució de probabilitat. En modelització, els coeficients d'entrada són fixats a partir de dades experimentals, les quals solen comportar incertesa pels errors de mesurament. A més a més, el comportament del fenomen físic sota estudi no segueix patrons estrictament deterministes. És per tant més realista treballar amb models matemàtics amb aleatorietat en la seua formulació. La solució, considerada en el sentit de camins aleatoris o en el sentit de mitjana quadràtica, és un procés estocàstic suau, la incertesa del qual s'ha de quantificar. La quantificació de la incertesa és sovint duta a terme calculant els principals estadístics (esperança i variància) i, si es pot, la funció de densitat de probabilitat. En aquest treball, estudiem models aleatoris lineals, basats en equacions diferencials ordinàries amb retard i sense, i en equacions en derivades parcials. L'estructura lineal dels models ens fa possible cercar certes solucions probabilístiques i inclús aproximar la seua funció de densitat de probabilitat, el qual és un objectiu complicat en general. Una part molt important de la dissertació es dedica a les equacions diferencials lineals de segon ordre aleatòries, on els coeficients de l'equació són processos estocàstics i les condicions inicials són variables aleatòries. L'estudi d'aquesta classe d'equacions diferencials en el context aleatori està motivat principalment pel seu important paper en Física Matemàtica. Comencem resolent l'equació diferencial de Legendre aleatoritzada en el sentit de mitjana quadràtica, el que permet l'aproximació de l'esperança i la variància de la solució estocàstica. La metodologia s'estén al cas general d'equacions diferencials lineals de segon ordre aleatòries amb coeficients analítics (expressables com a sèries de potències), per mitjà del conegut mètode de Fröbenius. Es duu a terme un estudi comparatiu amb mètodes espectrals basats en expansions de caos polinomial. Per altra banda, el mètode de Fröbenius juntament amb la simulació de Monte Carlo són emprats per a aproximar la funció de densitat de probabilitat de la solució. Per a accelerar el procediment de Monte Carlo, es proposen diversos mètodes de reducció de la variància basats en regles de quadratura i estratègies multinivell. L'última part sobre equacions diferencials lineals de segon ordre aleatòries estudia un problema aleatori de tipus Poisson de difusió-reacció, en què la funció de densitat de probabilitat és aproximada mitjançant un esquema numèric de diferències finites. En la tesi també es tracten equacions diferencials ordinàries aleatòries amb retard discret i constant. Estudiem el cas lineal i autònom, quan el coeficient del component no retardat i el paràmetre del terme retardat són ambdós variables aleatòries mentre que la condició inicial és un procés estocàstic. Es prova que la solució determinista construïda amb el mètode dels passos i que involucra la funció exponencial retardada és una solució probabilística en el sentit de Lebesgue. Finalment, el darrer capítol el dediquem a l'equació en derivades parcials lineal d'advecció, subjecta a velocitat i condició inicial estocàstiques. Resolem l'equació en el sentit de mitjana quadràtica i donem noves expressions per a la funció de densitat de probabilitat de la solució, inclús en el cas de velocitat no Gaussiana.
This work has been supported by the Spanish Ministerio de Economía y Competitividad grant MTM2017–89664–P. I acknowledge the doctorate scholarship granted by Programa de Ayudas de Investigación y Desarrollo (PAID), Universitat Politècnica de València.
Jornet Sanz, M. (2020). Mean square solutions of random linear models and computation of their probability density function [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/138394
TESIS
Abalenkovs, Maksims. "Huygens subgridding for the frequency-dependent/finite-difference time-domain method". Thesis, University of Manchester, 2011. https://www.research.manchester.ac.uk/portal/en/theses/huygens-subgridding-for-the-frequencydependentfinitedifference-timedomain-method(45581358-ff4d-4699-b3db-5bf76a021601).html.
Texto completoMontgomery, Jason W. "Condition-dependent Hilbert Spaces for Steepest Descent and Application to the Tricomi Equation". Thesis, University of North Texas, 2014. https://digital.library.unt.edu/ark:/67531/metadc699977/.
Texto completoGubinskytė, Silva. "Antrosios eilės diferencialinės lygties kraštinio uždavinio sprendinio struktūros priklausomybė nuo potencialo". Bachelor's thesis, Lithuanian Academic Libraries Network (LABT), 2014. http://vddb.library.lt/obj/LT-eLABa-0001:E.02~2014~D_20140716_142533-87588.
Texto completoOzdemir, Nilufer A. "The method of moments solution of a nonconformal volume integral equation via the IE-FFT algorithm for electromagnetic scattering from penetrable objects". Columbus, Ohio : Ohio State University, 2007. http://rave.ohiolink.edu/etdc/view?acc%5Fnum=osu1182258230.
Texto completoDražková, Jana. "Stability of Neutral Delay Differential Equations and Their Discretizations". Doctoral thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2014. http://www.nusl.cz/ntk/nusl-234204.
Texto completoLevitskaya, T. "The features of construction the empirical description of the drop contour in automation calculations of the surface properties of the melts". Thesis, Sumy State University, 2017. http://essuir.sumdu.edu.ua/handle/123456789/55770.
Texto completoShepherd, David. "Numerical methods for dynamic micromagnetics". Thesis, University of Manchester, 2015. https://www.research.manchester.ac.uk/portal/en/theses/numerical-methods-for-dynamic-micromagnetics(e8c5549b-7cf7-44af-8191-5244a491d690).html.
Texto completoNagamine, Andre. "Solução numérica de equações integro-diferenciais singulares". Universidade de São Paulo, 2009. http://www.teses.usp.br/teses/disponiveis/55/55134/tde-27052009-102500/.
Texto completoThe theory of the integral equations, since the second half of the 20th century, has been assuming an ever more important role in the modelling of applied problems. Consequently, the development of new numerical methods for integral equations is called for and a larger range of problems has been possible to be solved by these new techniques. In this sense, many types of integral equations have been derived from applications and been the object of studies, among them the so called singular integro-differential equation. The present work has, as its main objective, the study of singular integrodifferential equations, both linear and non-linear. More specifically, in the linear case, we present our main results regarding the derivation of a numerical method and its uniform convergence properties. The non-linear case is introduced through the mathematical model of boiler tubes in a specific type of nuclear reactor (LMFBR) from which the integro-differential equation originates. For this integro-differential equation a numerical method is proposed based on the physical conditions of the problem
Caron, Armand. "Approximations numeriques de problemes non lineaires : linearisation et resolution par un algorithme sous contrainte de regularite". Paris 6, 1987. http://www.theses.fr/1987PA066002.
Texto completoSekerci, Yadigar. "Some recent simulation techniques of diffusion bridge". Thesis, Växjö University, School of Mathematics and Systems Engineering, 2009. http://urn.kb.se/resolve?urn=urn:nbn:se:vxu:diva-5749.
Texto completoWe apply some recent numerical solutions to diffusion bridges written in Iacus (2008). One is an approximate scheme from Bladt and S{\o}rensen (2007), another one, from Beskos et al (2006), is an algorithm which is exact: no numerical error at given grid points!
Brubaker, Lauren P. "Completely Residual Based Code Verification". University of Akron / OhioLINK, 2006. http://rave.ohiolink.edu/etdc/view?acc_num=akron1132592325.
Texto completoSaadat, Sajedeh y Timo Kudljakov. "Deterministic Quadrature Formulae for the Black–Scholes Model". Thesis, Mälardalens högskola, Akademin för utbildning, kultur och kommunikation, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:mdh:diva-54612.
Texto completoROMANI, GIULIO. "Positivity and qualitative properties of solutions of fourth-order elliptic equations". Doctoral thesis, Università degli Studi di Milano, 2017. http://hdl.handle.net/2434/525734.
Texto completoJánský, Jiří. "Delay Difference Equations and Their Applications". Doctoral thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2010. http://www.nusl.cz/ntk/nusl-233892.
Texto completoLapitski, Denis. "Development of the Quantum Lattice Boltzmann method for simulation of quantum electrodynamics with applications to graphene". Thesis, University of Oxford, 2014. http://ora.ox.ac.uk/objects/uuid:e89cd11b-da2c-4c34-be9f-7b3d711e2e64.
Texto completoObrátil, Štěpán. "Vyšetřování stability numerických metod pro diferenciální rovnice se zpožděným argumentem". Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2019. http://www.nusl.cz/ntk/nusl-400513.
Texto completoSehnalová, Pavla. "Konvergence řešení soustav algebraických rovnic". Master's thesis, Vysoké učení technické v Brně. Fakulta informačních technologií, 2007. http://www.nusl.cz/ntk/nusl-236797.
Texto completoHamidi, Said. "Méthodes numériques pour les équations différentielles non anticipatives". Nancy 1, 1988. http://www.theses.fr/1988NAN10492.
Texto completoGowda, Veerapa. "Eléments finis discontinus pour les lois de conservation scalaires non linéaires". Paris 9, 1988. https://portail.bu.dauphine.fr/fileviewer/index.php?doc=1988PA090038.
Texto completoMohd, Damanhuri Nor Alisa. "The numerical approximation to solutions for the double-slip and double-spin model for the deformation and flow of granular materials". Thesis, University of Manchester, 2017. https://www.research.manchester.ac.uk/portal/en/theses/the-numerical-approximation-to-solutions-for-the-doubleslip-and-doublespin-model-for-the-deformation-and-flow-of-granular-materials(9986ac45-e48c-4061-a299-a80b2e665c3e).html.
Texto completo