Libros sobre el tema "Differential Equation Method de Wormald"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte los 38 mejores mejores libros para su investigación sobre el tema "Differential Equation Method de Wormald".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Explore libros sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.
Schiesser, W. E. A compendium of partial differential equation models: Method of lines analysis with MATLAB. Cambridge: Cambridge University Press, 2009.
Buscar texto completoC, Sorensen D. y Institute for Computer Applications in Science and Engineering., eds. An asymptotic induced numerical method for the convection-diffusion-reaction equation. Hampton, VA: Institute for Computer Applications in Science and Engineering, NASA Langley Research Center, 1988.
Buscar texto completoN, Bellomo y Gatignol Renée, eds. Lecture notes on the discretization of the Boltzmann equation. River Edge, NJ: World Scientific, 2003.
Buscar texto completoUnited States. National Aeronautics and Space Administration., ed. Compact finite volume methods for the diffusion equation. Greensboro, NC: Dept. of Mechanical Engineering, N.C. A&T State University, 1989.
Buscar texto completoT, Patera Anthony, Peraire Jaume y Langley Research Center, eds. A posteriori finite element bounds for sensitivity derivatives of partial-differential-equation outputs. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1998.
Buscar texto completoParallel-vector equation solvers for finite element engineering applications. New York: Kluwer Academic / Plenum Publishers, 2002.
Buscar texto completoWang, Baoxiang. Harmonic analysis method for nonlinear evolution equations, I. Singapore: World Scientific Pub. Co., 2011.
Buscar texto completoSin-Chung, Chang y United States. National Aeronautics and Space Administration., eds. The Space-time solution element method-a new numerical approach for the Navier-Stokes equations. [Washington, DC]: National Aeronautics and Space Administration, 1995.
Buscar texto completoSin-Chung, Chang y United States. National Aeronautics and Space Administration., eds. The Space-time solution element method-a new numerical approach for the Navier-Stokes equations. [Washington, DC]: National Aeronautics and Space Administration, 1995.
Buscar texto completoYeffet, Amir. A non-dissipative staggered fourth-order accurate explicit finite difference scheme for the time-domain Maxwell's equations. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1999.
Buscar texto completoYeffet, Amir. A non-dissipative staggered fourth-order accurate explicit finite difference scheme for the time-domain Maxwell's equations. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1999.
Buscar texto completoYeffet, Amir. A non-dissipative staggered fourth-order accurate explicit finite difference scheme for the time-domain Maxwell's equations. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1999.
Buscar texto completoYeffet, Amir. A non-dissipative staggered fourth-order accurate explicit finite difference scheme for the time-domain Maxwell's equations. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1999.
Buscar texto completoYeffet, Amir. A non-dissipative staggered fourth-order accurate explicit finite difference scheme for the time-domain Maxwell's equations. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1999.
Buscar texto completoR, Radespiel, Turkel E y Institute for Computer Applications in Science and Engineering., eds. Comparison of several dissipation algorithms for central difference schemes. Hampton, VA: Institute for Computer Applications in Science and Engineering, NASA Langley Research Center, 1997.
Buscar texto completoN, Tiwari S. y Langley Research Center, eds. Radiative interactions in chemically reacting compressible nozzle flows using Monte Carlo simulations. Norfolk, Va: Institute for Computational and Applied Mechanics, Old Dominion University, 1994.
Buscar texto completoCenter, Langley Research, ed. Proper orthogonal decomposition in optimal control of fluids. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1999.
Buscar texto completoDifferential equation based method for accurate approximations in optimization. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1990.
Buscar texto completoSchiesser, W. E. y Graham W. Griffiths. Compendium of Partial Differential Equation Models: Method of Lines Analysis with Matlab. Cambridge University Press, 2009.
Buscar texto completoWu, Sean F. Helmholtz Equation Least Squares Method: For Reconstructing and Predicting Acoustic Radiation. Springer, 2015.
Buscar texto completoDonninger, Roland y Joachim Krieger. Vector Field Method on the Distorted Fourier Side and Decay for Wave Equations with Potentials. American Mathematical Society, 2016.
Buscar texto completoGriffiths, Graham W. y William E. Schiesser. Compendium of Partial Differential Equation Models: Method of Lines Analysis with Matlab. Cambridge University Press, 2009.
Buscar texto completoGriffiths, Graham W. y William E. Schiesser. Compendium of Partial Differential Equation Models: Method of Lines Analysis with Matlab. Cambridge University Press, 2009.
Buscar texto completoGriffiths, Graham W. y William E. Schiesser. Compendium of Partial Differential Equation Models: Method of Lines Analysis with Matlab. Cambridge University Press, 2009.
Buscar texto completoGriffiths, Graham W. y William E. Schiesser. Compendium of Partial Differential Equation Models: Method of Lines Analysis with Matlab. Cambridge University Press, 2009.
Buscar texto completoWu, Sean F. The Helmholtz Equation Least Squares Method: For Reconstructing and Predicting Acoustic Radiation. Springer, 2016.
Buscar texto completoNguyen, Duc Thai. Parallel-Vector Equation Solvers for Finite Element Engineering Applications. Springer, 2012.
Buscar texto completoOhira, Toru. A master equation approach to stochastic neurodynamics. 1993.
Buscar texto completo(Editor), N. Bellomo y Renee Gatignol (Editor), eds. Lecture Notes on the Discretization of the Boltzmann Equation (Series on Advances in Mathematics for Applied Sciences). World Scientific Publishing Company, 2003.
Buscar texto completoThe Space-time solution element method-a new numerical approach for the Navier-Stokes equations. [Washington, DC]: National Aeronautics and Space Administration, 1995.
Buscar texto completoMann, Peter. Differential Equations. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198822370.003.0035.
Texto completoEscudier, Marcel. Laminar boundary layers. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198719878.003.0017.
Texto completoRajeev, S. G. Finite Difference Methods. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198805021.003.0014.
Texto completoEriksson, Olle, Anders Bergman, Lars Bergqvist y Johan Hellsvik. Atomistic Spin Dynamics. Oxford University Press, 2017. http://dx.doi.org/10.1093/oso/9780198788669.001.0001.
Texto completoRajeev, S. G. Spectral Methods. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198805021.003.0013.
Texto completoMann, Peter. Vector Calculus. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198822370.003.0034.
Texto completoBoudreau, Joseph F. y Eric S. Swanson. Continuum dynamics. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198708636.003.0019.
Texto completoOptimization of Objective Functions: Analytics. Numerical Methods. Design of Experiments. Moscow, Russia: Fizmatlit Publisher, 2009.
Buscar texto completo