Literatura académica sobre el tema "Differential Equation Method de Wormald"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Differential Equation Method de Wormald".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Differential Equation Method de Wormald"
Zou, Li, Zhen Wang y Zhi Zong. "Generalized differential transform method to differential-difference equation". Physics Letters A 373, n.º 45 (noviembre de 2009): 4142–51. http://dx.doi.org/10.1016/j.physleta.2009.09.036.
Texto completoLi, Meng-Rong, Tzong-Hann Shieh, C. Jack Yue, Pin Lee y Yu-Tso Li. "Parabola Method in Ordinary Differential Equation". Taiwanese Journal of Mathematics 15, n.º 4 (agosto de 2011): 1841–57. http://dx.doi.org/10.11650/twjm/1500406383.
Texto completoAli Hussain, Eman y Yahya Mourad Abdul – Abbass. "On Fuzzy differential equation". Journal of Al-Qadisiyah for computer science and mathematics 11, n.º 2 (21 de agosto de 2019): 1–9. http://dx.doi.org/10.29304/jqcm.2019.11.2.540.
Texto completoChang, Ick-Soon y Sheon-Young Kang. "Fredholm integral equation method for the integro-differential Schrödinger equation". Computers & Mathematics with Applications 56, n.º 10 (noviembre de 2008): 2676–85. http://dx.doi.org/10.1016/j.camwa.2008.05.027.
Texto completoJain, Pankaj, Chandrani Basu y Vivek Panwar. "Reduced $pq$-Differential Transform Method and Applications". Journal of Inequalities and Special Functions 13, n.º 1 (30 de marzo de 2022): 24–40. http://dx.doi.org/10.54379/jiasf-2022-1-3.
Texto completoAbe, Kenji, Akira Ishida, Tsuguhiro Watanabe, Yasumasa Kanada y Kyoji Nishikawa. "HIDM-New Numerical Method for Differential Equation". Kakuyūgō kenkyū 57, n.º 2 (1987): 85–95. http://dx.doi.org/10.1585/jspf1958.57.85.
Texto completoChen, Xi y Ying Dai. "Differential transform method for solving Richards’ equation". Applied Mathematics and Mechanics 37, n.º 2 (febrero de 2016): 169–80. http://dx.doi.org/10.1007/s10483-016-2023-8.
Texto completoYouness, Ebrahim A., Abd El-Monem A. Megahed, Elsayed E. Eladdad y Hanem F. A. Madkour. "Min-max differential game with partial differential equation". AIMS Mathematics 7, n.º 8 (2022): 13777–89. http://dx.doi.org/10.3934/math.2022759.
Texto completoKhalili Golmankhaneh, Alireza y Carlo Cattani. "Fractal Logistic Equation". Fractal and Fractional 3, n.º 3 (11 de julio de 2019): 41. http://dx.doi.org/10.3390/fractalfract3030041.
Texto completoTuluce Demiray, Seyma, Yusuf Pandir y Hasan Bulut. "Generalized Kudryashov Method for Time-Fractional Differential Equations". Abstract and Applied Analysis 2014 (2014): 1–13. http://dx.doi.org/10.1155/2014/901540.
Texto completoTesis sobre el tema "Differential Equation Method de Wormald"
Aliou, Diallo Aoudi Mohamed Habib. "Local matching algorithms on the configuration model". Electronic Thesis or Diss., Compiègne, 2023. http://www.theses.fr/2023COMP2742.
Texto completoThe present thesis constructs an alternative framework to online matching algorithms on large graphs. Using the configuration model to mimic the degree distributions of large networks, we are able to build algorithms based on local matching policies for nodes. Thus, we are allowed to predict and approximate the performances of a class of matching policies given the degree distributions of the initial network. Towards this goal, we use a generalization of the differential equation method to measure valued processes. Through-out the text, we provide simulations and a comparison to the seminal work of Karp, Vazirani and Vazirani based on the prevailing viewpoint in online bipartite matching
Akman, Makbule. "Differential Quadrature Method For Time-dependent Diffusion Equation". Master's thesis, METU, 2003. http://etd.lib.metu.edu.tr/upload/1224559/index.pdf.
Texto completoShedlock, Andrew James. "A Numerical Method for solving the Periodic Burgers' Equation through a Stochastic Differential Equation". Thesis, Virginia Tech, 2021. http://hdl.handle.net/10919/103947.
Texto completoMaster of Science
Burgers equation is a Partial Differential Equation (PDE) used to model how fluids evolve in time based on some initial condition and viscosity parameter. This viscosity parameter helps describe how the energy in a fluid dissipates. When studying partial differential equations, it is often hard to find a closed form solution to the problem, so we often approximate the solution with numerical methods. As our viscosity parameter approaches 0, many numerical methods develop problems and may no longer accurately compute the solution. Using random variables, we develop an approximation algorithm and test our numerical method on various types of initial conditions with small viscosity coefficients.
Kurus, Gulay. "Solution Of Helmholtz Type Equations By Differential Quadarature Method". Master's thesis, METU, 2000. http://etd.lib.metu.edu.tr/upload/2/12605383/index.pdf.
Texto completoYang, Zhengzheng. "Nonlocally related partial differential equation systems, the nonclassical method and applications". Thesis, University of British Columbia, 2013. http://hdl.handle.net/2429/44993.
Texto completoTemimi, Helmi. "A Discontinuous Galerkin Method for Higher-Order Differential Equations Applied to the Wave Equation". Diss., Virginia Tech, 2008. http://hdl.handle.net/10919/26454.
Texto completoPh. D.
Krueger, Justin Michael. "Parameter Estimation Methods for Ordinary Differential Equation Models with Applications to Microbiology". Diss., Virginia Tech, 2017. http://hdl.handle.net/10919/78674.
Texto completoPh. D.
Mbroh, Nana Adjoah. "On the method of lines for singularly perturbed partial differential equations". University of the Western Cape, 2017. http://hdl.handle.net/11394/5679.
Texto completoMany chemical and physical problems are mathematically described by partial differential equations (PDEs). These PDEs are often highly nonlinear and therefore have no closed form solutions. Thus, it is necessary to recourse to numerical approaches to determine suitable approximations to the solution of such equations. For solutions possessing sharp spatial transitions (such as boundary or interior layers), standard numerical methods have shown limitations as they fail to capture large gradients. The method of lines (MOL) is one of the numerical methods used to solve PDEs. It proceeds by the discretization of all but one dimension leading to systems of ordinary di erential equations. In the case of time-dependent PDEs, the MOL consists of discretizing the spatial derivatives only leaving the time variable continuous. The process results in a system to which a numerical method for initial value problems can be applied. In this project we consider various types of singularly perturbed time-dependent PDEs. For each type, using the MOL, the spatial dimensions will be discretized in many different ways following fitted numerical approaches. Each discretisation will be analysed for stability and convergence. Extensive experiments will be conducted to confirm the analyses.
Janssen, Micha. "A Constraint Satisfaction Approach for Enclosing Solutions to Initial Value Problems for Parametric Ordinary Differential Equations". Université catholique de Louvain, 2001. http://edoc.bib.ucl.ac.be:81/ETD-db/collection/available/BelnUcetd-11042002-155822/.
Texto completoRockstroh, Parousia. "Boundary value problems for the Laplace equation on convex domains with analytic boundary". Thesis, University of Cambridge, 2018. https://www.repository.cam.ac.uk/handle/1810/273939.
Texto completoLibros sobre el tema "Differential Equation Method de Wormald"
Schiesser, W. E. A compendium of partial differential equation models: Method of lines analysis with MATLAB. Cambridge: Cambridge University Press, 2009.
Buscar texto completoC, Sorensen D. y Institute for Computer Applications in Science and Engineering., eds. An asymptotic induced numerical method for the convection-diffusion-reaction equation. Hampton, VA: Institute for Computer Applications in Science and Engineering, NASA Langley Research Center, 1988.
Buscar texto completoN, Bellomo y Gatignol Renée, eds. Lecture notes on the discretization of the Boltzmann equation. River Edge, NJ: World Scientific, 2003.
Buscar texto completoUnited States. National Aeronautics and Space Administration., ed. Compact finite volume methods for the diffusion equation. Greensboro, NC: Dept. of Mechanical Engineering, N.C. A&T State University, 1989.
Buscar texto completoT, Patera Anthony, Peraire Jaume y Langley Research Center, eds. A posteriori finite element bounds for sensitivity derivatives of partial-differential-equation outputs. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1998.
Buscar texto completoParallel-vector equation solvers for finite element engineering applications. New York: Kluwer Academic / Plenum Publishers, 2002.
Buscar texto completoWang, Baoxiang. Harmonic analysis method for nonlinear evolution equations, I. Singapore: World Scientific Pub. Co., 2011.
Buscar texto completoSin-Chung, Chang y United States. National Aeronautics and Space Administration., eds. The Space-time solution element method-a new numerical approach for the Navier-Stokes equations. [Washington, DC]: National Aeronautics and Space Administration, 1995.
Buscar texto completoSin-Chung, Chang y United States. National Aeronautics and Space Administration., eds. The Space-time solution element method-a new numerical approach for the Navier-Stokes equations. [Washington, DC]: National Aeronautics and Space Administration, 1995.
Buscar texto completoYeffet, Amir. A non-dissipative staggered fourth-order accurate explicit finite difference scheme for the time-domain Maxwell's equations. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1999.
Buscar texto completoCapítulos de libros sobre el tema "Differential Equation Method de Wormald"
Sewell, Granville. "Partial Differential Equation Applications". En Analysis of a Finite Element Method, 1–21. New York, NY: Springer US, 1985. http://dx.doi.org/10.1007/978-1-4684-6331-6_1.
Texto completoHirsch, Francis, Christophe Profeta, Bernard Roynette y Marc Yor. "The Stochastic Differential Equation Method". En Peacocks and Associated Martingales, with Explicit Constructions, 223–64. Milano: Springer Milan, 2011. http://dx.doi.org/10.1007/978-88-470-1908-9_6.
Texto completoCsató, Gyula, Bernard Dacorogna y Olivier Kneuss. "General Considerations on the Flow Method". En The Pullback Equation for Differential Forms, 255–65. Boston: Birkhäuser Boston, 2011. http://dx.doi.org/10.1007/978-0-8176-8313-9_12.
Texto completoLiao, Shijun. "Two and Three Dimensional Gelfand Equation". En Homotopy Analysis Method in Nonlinear Differential Equations, 461–91. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-25132-0_14.
Texto completoPellegrino, Sabrina Francesca. "A Convolution-Based Method for an Integro-Differential Equation in Mechanics". En Fractional Differential Equations, 107–20. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-7716-9_7.
Texto completoZou, Li, Zhi Zong, Zhen Wang y Shoufu Tian. "Differential Transform Method for the Degasperis-Procesi Equation". En Lecture Notes in Electrical Engineering, 197–203. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-28744-2_25.
Texto completoLiu, Xiao-Ming, Ling Hong y Jun Jiang. "The Transform Method to Solve Fuzzy Differential Equation via Differential Inclusions". En Advances in Fuzzy Integral and Differential Equations, 49–79. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-73711-5_2.
Texto completoDobrogowska, Alina y Mahouton Norbert Hounkonnou. "Factorization Method and General Second Order Linear Difference Equation". En Differential and Difference Equations with Applications, 67–77. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-75647-9_6.
Texto completoLian, Yanping, Gregory J. Wagner y Wing Kam Liu. "A Meshfree Method for the Fractional Advection-Diffusion Equation". En Meshfree Methods for Partial Differential Equations VIII, 53–66. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-51954-8_4.
Texto completoKnabner, Peter y Lutz Angermann. "The Finite Element Method for the Poisson Equation". En Numerical Methods for Elliptic and Parabolic Partial Differential Equations, 51–109. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-79385-2_2.
Texto completoActas de conferencias sobre el tema "Differential Equation Method de Wormald"
Mesˇtrovic´, Mladen. "Generalized Differential Quadrature Method for Burgers Equation". En ASME 2003 Pressure Vessels and Piping Conference. ASMEDC, 2003. http://dx.doi.org/10.1115/pvp2003-1905.
Texto completoMikaeilvand, Nasser, Sakineh Khakrangin y Tofigh Allahviranloo. "Solving fuzzy Volterra integro-differential equation by fuzzy differential transform method". En 7th conference of the European Society for Fuzzy Logic and Technology. Paris, France: Atlantis Press, 2011. http://dx.doi.org/10.2991/eusflat.2011.56.
Texto completoZhang, Xiao-yong y Yan Li. "Generalized Laguerre Spectral Method for Ordinary Differential Equation". En 2011 Fourth International Joint Conference on Computational Sciences and Optimization (CSO). IEEE, 2011. http://dx.doi.org/10.1109/cso.2011.139.
Texto completoXinran, Zhong, Ying Dai y Xi Chen. "Application of Differential Transform Method in Richards' Equation". En 2016 International Forum on Energy, Environment and Sustainable Development. Paris, France: Atlantis Press, 2016. http://dx.doi.org/10.2991/ifeesd-16.2016.27.
Texto completoServi, Sema, Yildiray Keskin y Galip Oturanç. "Reduced differential transform method for improved Boussinesq equation". En PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON NUMERICAL ANALYSIS AND APPLIED MATHEMATICS 2014 (ICNAAM-2014). AIP Publishing LLC, 2015. http://dx.doi.org/10.1063/1.4912601.
Texto completoZhang, Yaping. "Neural Network Method for Solving Partial Differential Equation". En 2023 2nd International Conference on Artificial Intelligence and Autonomous Robot Systems (AIARS). IEEE, 2023. http://dx.doi.org/10.1109/aiars59518.2023.00077.
Texto completoPRITCHARD, JOCELYN y HOWARD ADELMAN. "Differential Equation Based Method for Accurate Approximations in Optimization". En 31st Structures, Structural Dynamics and Materials Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1990. http://dx.doi.org/10.2514/6.1990-1176.
Texto completoChen, Luoping. "Analysis of numerical method for semilinear stochastic differential equation". En Conference on Data Science and Knowledge Engineering for Sensing Decision Support (FLINS 2018). WORLD SCIENTIFIC, 2018. http://dx.doi.org/10.1142/9789813273238_0008.
Texto completoNarayanamoorthy, S., T. Manirathinam, Seunggyu Lee y K. Thangapandi. "Fractal differential transform method for solving fuzzy logistic equation". En PROCEEDINGS OF INTERNATIONAL CONFERENCE ON ADVANCES IN MATERIALS RESEARCH (ICAMR - 2019). AIP Publishing, 2020. http://dx.doi.org/10.1063/5.0017200.
Texto completoZhang, X. G., Q. Zhang, J. P. Sun, T. Wang, Z. P. Song y J. J. Wang. "Precise transfer matrix method for solving differential equation systems". En TIM 18 PHYSICS CONFERENCE. Author(s), 2018. http://dx.doi.org/10.1063/1.5075644.
Texto completoInformes sobre el tema "Differential Equation Method de Wormald"
Sparks, Paul, Jesse Sherburn, William Heard y Brett Williams. Penetration modeling of ultra‐high performance concrete using multiscale meshfree methods. Engineer Research and Development Center (U.S.), septiembre de 2021. http://dx.doi.org/10.21079/11681/41963.
Texto completo