Literatura académica sobre el tema "Development of Polymers"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Development of Polymers".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Development of Polymers"
Roda, Ana, Ana Matias, Alexandre Paiva y Ana Duarte. "Polymer Science and Engineering Using Deep Eutectic Solvents". Polymers 11, n.º 5 (21 de mayo de 2019): 912. http://dx.doi.org/10.3390/polym11050912.
Texto completoSienkiewicz, Anna y Piotr Czub. "Flame Retardancy of Biobased Composites—Research Development". Materials 13, n.º 22 (20 de noviembre de 2020): 5253. http://dx.doi.org/10.3390/ma13225253.
Texto completoChawla, Pooja y Monika Mis. "Polymeric Drugs: A Novel Approach to Drug Delivery System". International Journal of Pharmaceutical Sciences and Nanotechnology 6, n.º 1 (31 de mayo de 2013): 1925–34. http://dx.doi.org/10.37285/ijpsn.2013.6.1.2.
Texto completoDong, Xiaobo, David Lu, Tequila A. L. Harris y Isabel C. Escobar. "Polymers and Solvents Used in Membrane Fabrication: A Review Focusing on Sustainable Membrane Development". Membranes 11, n.º 5 (23 de abril de 2021): 309. http://dx.doi.org/10.3390/membranes11050309.
Texto completoJeong, WonJo, Kyumin Lee, Jaeyoung Jang y In Hwan Jung. "Development of Benzobisoxazole-Based Novel Conjugated Polymers for Organic Thin-Film Transistors". Polymers 15, n.º 5 (24 de febrero de 2023): 1156. http://dx.doi.org/10.3390/polym15051156.
Texto completoGanesh, Kumar, Dhyani Archana y Kothiyal Preeti. "Natural Polymers in ihe Development of Floating Drug Delivery Systems: A Review". International Journal of Pharmaceutical and Life Sciences 2, n.º 4 (24 de noviembre de 2013): 165–78. http://dx.doi.org/10.3329/ijpls.v2i4.17116.
Texto completoSpychalska, Kamila, Dorota Zając, Sylwia Baluta, Kinga Halicka y Joanna Cabaj. "Functional Polymers Structures for (Bio)Sensing Application—A Review". Polymers 12, n.º 5 (18 de mayo de 2020): 1154. http://dx.doi.org/10.3390/polym12051154.
Texto completoAsim Mushtaq, Asim Mushtaq y Hilmi Mukhtar and Azmi Mohd Shariff Hilmi Mukhtar and Azmi Mohd Shariff. "Recent Development of Enhanced Polymeric Blend Membranes in Gas Separation: A Review". Journal of the chemical society of pakistan 42, n.º 2 (2020): 282. http://dx.doi.org/10.52568/000635.
Texto completoAsim Mushtaq, Asim Mushtaq y Hilmi Mukhtar and Azmi Mohd Shariff Hilmi Mukhtar and Azmi Mohd Shariff. "Recent Development of Enhanced Polymeric Blend Membranes in Gas Separation: A Review". Journal of the chemical society of pakistan 42, n.º 2 (2020): 282. http://dx.doi.org/10.52568/000635/jcsp/42.02.2020.
Texto completoRollo-Walker, Gregory, Nino Malic, Xiaoen Wang, John Chiefari y Maria Forsyth. "Development and Progression of Polymer Electrolytes for Batteries: Influence of Structure and Chemistry". Polymers 13, n.º 23 (26 de noviembre de 2021): 4127. http://dx.doi.org/10.3390/polym13234127.
Texto completoTesis sobre el tema "Development of Polymers"
Le, Guilly Marie O. "Development of ionic polymer actuator arrays /". Thesis, Connect to this title online; UW restricted, 2004. http://hdl.handle.net/1773/7078.
Texto completoThapar, H. "Preferred orientation development in polymers". Thesis, Brunel University, 1985. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.384513.
Texto completoDe, Kock Jacobus Johannes. "Fun with polymers : development of interactive multimedia and practical polymer science programmes". Thesis, Stellenbosch : Stellenbosch University, 2002. http://hdl.handle.net/10019.1/52856.
Texto completoENGLISH ABSTRACT: Multimedia was the buzzword of the previous decade. Electronic learning is the buzzword of this decade. Both concepts changed, and are still changing the way educators present knowledge and information to students, both locally and worldwide. South Africa, also standing in the midst of these technological changes, has its own unique opportunities regarding the teaching environment. Different factors are currently changing the educational scene in South Africa. With Curriculum 2000 and the Outcome-Based Education concept (OBE) came the opportunity to choose and incorporate relevant science and technology programmes into school curriculums. The introduction of Technology as a subject in junior secondary school, opened the door to bring students in contact with, for example, the vast world of material science. Senior secondary students, on the contrary, have little or no exposure to teaching programmes on modern materials; materials that rule their lives! There is a need for high quality, easily accessible and informative material science programmes. This provided the initiative to create this programme. Depending on the standard of students, "Fun with Polymers" can be used as: • a lecturing tool for teachers and lecturers • an encyclopeadia which students can interactively navigate to learn more about polymer science • a source of information to anyone curious about the interesting world of plastic materials. The name "Fun with Polymers" indicates that learning science can be fun (after ali!). The programme contains easy to use navigation buttons, helpfiles, hypertext, sound, animations and pictures to teach synthetic polymer material science. Content consists of the history of the development of polymer materials, basic polymer chemistry principles, information on the building of macromolecules, facts on synthetic polymer materials, and some questions and answers to test the student's knowledge. Practical experiments, with plastic materials, complement the theoretical information and provide students with hands-on experience.
AFRIKAANSE OPSOMMING: Multimedia was die gonswoord van die vorige dekade. Elektroniese leer is die gonswoord van die nuwe dekade. Beide hierdie konsepte het, en is nog steeds besig, om die wyse hoe kennis en inligting, plaaslik en wêreldwyd, aan studente oorgedra word, te verander. Suid-Afrika, as deel van hierdie tegnologiese veranderinge, bied unieke en uitdagende geleenthede op die gebied van onderwys. Verskillende faktore beïnvloed, op die oomblik, die plaaslike onderwys scenario. Die koms van Kurrikulum 2000 en Uitkomsgebaseerde Onderwys het die deur vir toepaslike wetenskap- en tegnologie programme, as deel van skoolleerplanne, geopen. Die toevoeging van Tegnologie, as vakgebied, tot die junior sekondêre fase, skep die geleentheid om studente in aanraking te bring met, byvoorbeeld, die enorme wêreld van materiaalkunde. Senior sekondêre studente het egter min tot geen blootstelling aan materiaalkunde leerprogramme ten spyte van die feit dat hul lewens daagliks deur moderne materiale beïnvloed en beheer word! Daar bestaan 'n behoefte aan hoë kwaliteit, maklik bekombare inligting oor moderne materiale en vandaar die dryfveer om hierdie program te skep. Afhangende van die standaard van die studente, kan hierdie program gebruik word as: • 'n onderrigprogram vir onderwysers en lektore • 'n bron van inligting wat studente interaktief kan navigeer om meer van polimeeerchemie te wete te kom • 'n bron van inligting vir enigiemand wat nuuskierig is oor die interessante wêreld van plastieke. Die naam van hierdie program: "Fun with Polymers" dui daarop dat die wetenskapleerproses pret kan wees! Die program bestaan uit maklik navigeerbare instruksies, hulplêers, hiperteks, klank, animasies, en foto's om lig te werp op die onderwerp van plastiek. Die inhoud beslaan die geskiedenis van die ontwikkeling van plastiek= materiale, basiese polimeerchemie beginsels, inligting oor die vorming van makro= molekules, feite oor sintetiese polimeermateriale, en vrae en antwoorde om die gebruiker te toets oor sy/haar kennis. Maklik uitvoerbare en toepaslike praktiese eksperimente komplimenteer die teoretiese inhoud van die multimedia program.
Katsumata, Toru. "POLYMER SYNTHESIS USING RUTHENIUM AND OTHER CATALYSTS AND DEVELOPMENT OF FUNCTIONAL POLYMERS". 京都大学 (Kyoto University), 2009. http://hdl.handle.net/2433/77982.
Texto completo0048
新制・課程博士
博士(工学)
甲第14643号
工博第3111号
新制||工||1463(附属図書館)
26995
UT51-2009-D355
京都大学大学院工学研究科高分子化学専攻
(主査)教授 澤本 光男, 教授 伊藤 紳三郎, 教授 辻 康之
学位規則第4条第1項該当
Fan, Weizheng. "Development of Photoresponsive Polymers and Polymer/Inorganic Composite Materials Based on the Coumarin Chromophore". University of Akron / OhioLINK, 2013. http://rave.ohiolink.edu/etdc/view?acc_num=akron1366903513.
Texto completoReece, David Andrew. "Development of conducting polymers for separations". Access electronically, 2003. http://www.library.uow.edu.au/adt-NWU/public/adt-NWU20040813.163155/index.html.
Texto completoFan, Weizheng. "Development of multifunctional polymeric single-chain nanoparticles based on stimuli-responsive polymers". Thèse, Université de Sherbrooke, 2017. http://hdl.handle.net/11143/10991.
Texto completoAbstract : With interests on nanoscience and nanotechnology for many applications, there is a demand for development of fabrication technology of ultra-small nano-size objects that allow for precise size control and tailored functionality. Recently, a new technology called ‘single-chain technology’, which manipulates a single polymer chain, becomes a rapidly-growing research topic. This technology provides a facile method to prepare polymer single-chain nanoparticles (SCNPs) with a typical size of 1.5-20 nm. Due to the ultra-small size-enabled unique properties, SCNPs have wide range of applications, including sensor, catalytic system, low viscosity coating, nanoreactor and biomedical applications. Through the contributions by many scientists in the past decade, the synthetic methodologies to fabricate SCNPs have been reported using various chemistries and been getting mature. However, there are still several unsolved problems in the field of SCNPs including functions and application. Stimuli-responsive polymers, as a class of smart materials whose properties can be changed by responding to external stimuli, have been widely used in energy and biomedical applications. Since their chemical and physical properties can be changed easily and efficiently via environmental control, stimuli-responsive polymers provide a potential pathway to preparing functional SCNPs. In this thesis, we are focusing on developing functional SCNPs, especially systems with multi-functions, and expanding their applications. To achieve this target, various stimuli-responsive polymers were prepared as polymer precursors and their stimuli-responsive properties were introduced into the SCNP systems by rational design of their chemical structures. The core of this thesis is comprised of three projects which deal with three classes of SCNPs from stimuli-responsive polymers. These stimuli-responsive SCNPs perform multi-functions and undergo certain change either in structure or morphology and properties. In addition, according to their variety of functions, each class of multi-functional SCNPs has diverse potential applications. In the first study presented in the thesis (Chapter 1), we prepared a class of sub-10 nm photodegradable and size-tunable SCNPs based on photo-responsive main-chain coumarin-based polyesters Poly{[7-(hydroxypropoxy)-4-(hydroxymethyl)coumarin adipate]-co- (polypropylene glycol adipate)} (CAPPG) through copolymerization of coumarin diol, adipic acid and polypropylene glycol (PPG). By incorporating coumarin moieties into the chain backbone of a polyester, dual photo-responsive reaction, i.e. photo-dimerization (>320 nm) and photo-induced chain scission (254 nm), occur under two different wavelengths of UV irradiation, enabling the preparation of sub-10 nm SCNPs and their photo-degradation property. The photo-degradability of SCNPs is evidenced under 254 nm UV irradiation for 3 h, which molecular weight of SCNPs decreasing from 13220 g/mol to 1385 g/mol. Moreover, the size of SCNPs can be tunable from 5.3 nm to 3 nm (hydrodynamic diameter) by varying the dimerization degree of coumarin moieties, that is simply controlled by the UV irradiation time. These results demonstrate a facile method to control the size of SCNPs without the need for synthesizing different polymer precursors. Finally, due to the biocompatible and biodegradable nature of polyester as polymer precursor, the SCNPs with photo-degradability and size-tunability have the potential to be exploited for biomedical applications. In the second study realized in this thesis (Chapter 2), we prepared a new type of multi-functional SCNPs from a side-chain liquid crystalline polymer (SCLCP), namely poly{6-[4-(4-methoxyphenylazo) phenoxy]hexylmethacrylate-co-4-methyl-[7-(methacr-yloyl) oxy-ethyl-oxy]coumarin} (PAzoMACMA). The polymer’s side groups comprise photo-isomerizable azobenzene in majority and photo-dimerizable coumarin in minority, with the former as mesogens and the latter for intra-chain photo-crosslinking. Despite the sub-15 nm size, confinement and crosslinking, the liquid crystalline (LC) phases of bulk PAzoMACMA persist in SCLCPs. Such LC-SCNPs exhibit a number of interesting and peculiar properties. While their dispersion in THF is non-fluorescent, when dispersed in chloroform, the nanoparticles appear to agglomerate to certain degree and display significant fluorescence that is different for SCNPs rich in the trans or cis isomer of azobenzene. The azobenzene LC-SCNPs also undergo photo-induced deformation, similar to azobenzene micro- or colloidal particles. However, the elongational deformation of the nanoparticles is dependent upon the linearly polarized excitation wavelength. While under polarized 365 nm UV irradiation the SCNP stretching direction is perpendicular to the light polarization, under polarized 400-500 nm visible light irradiation, the stretching takes place along the light polarization direction. Finally, an all-polymer nanocomposite was prepared by dispersing the LC-SCNPs in poly(methyl methacrylate) (PMMA), and mechanically stretching-induced orientation of azobenzene mesogens developed along the strain direction. The interesting properties of LC-SCNPs unveiled in this study suggest new possibilities for applications including bio-imaging and LC materials. As the third study in this thesis (Chapter 3), we studied a class of CO2-responsive SCNPs and their self-assembled micellar aggregates. On one hand, SCNPs are prepared from a random copolymer of poly{(N,N-dimethylaminoethyl methacrylate)-co-4-methyl-[7-(methacryloyl)oxyethyl-oxy]coumarin} (P(DMAEMA-co-CMA)). When dispersed in aqueous solution, individual nanoparticles can undergo reversible swelling/shrinking under alternating CO2/N2 stimulation as a result of the reversible protonation/deprotonation of tertiary amine groups. On the other hand, tadpole-like single-chain ‘Janus’ nanoparticles (SCJNPs) are prepared using an amphiphilic diblock copolymer of PS-b-P(DMAEMA-co-CMA) (PS is hydrophobic polystyrene). This type of SCJNPs can self-assemble into core-shell micellar aggregates in aqueous solution. Under CO2/N2 stimulation, the collective swelling/shrinking of SCJNPs within the micelle results in large, reversible volume change. In addition, both P(DMAEMA-co-CMA) SCNPs and PS-b-P(DMAEMA-co-CMA) SCJNP micelles are explored as gas-tunable nanoreactors for gold nanoparticles (AuNPs). The rate of AuNP formation increases under CO2 stimulation and decreases upon N2 bubbling, which makes it possible to tune the reaction rate up and down (on/off switching) by using the two gases. Moreover, using the micelles of SCJNPs, whose volume can be controlled over a wide range by adjusting the CO2 stimulation strength, variable-size AuNPs and their aggregates are obtained with continuous redshift of the surface plasmon resonance (SPR) into the long wavelength visible light region.
Mori, Daisuke. "Development of Polymer Blend Solar Cells Composed of Conjugated Donor and Acceptor Polymers". 京都大学 (Kyoto University), 2015. http://hdl.handle.net/2433/199331.
Texto completoTshikhudo, Tshinyadzo Robert. "Development of nickel-selective molecularly imprinted polymers". Thesis, Rhodes University, 2002. http://hdl.handle.net/10962/d1004449.
Texto completoKMBT_363
Adobe Acrobat 9.54 Paper Capture Plug-in
Treharne, Andrew J. "Development of biocompatible polymers for ocular applications". Thesis, University of Southampton, 2012. https://eprints.soton.ac.uk/344289/.
Texto completoLibros sobre el tema "Development of Polymers"
Thapar, Harish. Preferred orientation development in polymers. Uxbridge: Brunel University, 1985.
Buscar texto completoPolymer crystallization: The development of crystalline order in thermoplastic polymers. Oxford: Oxford University Press, 2001.
Buscar texto completo1950-, Zachariades Anagnostis E. y Porter Roger Stephen 1928-, eds. High modulus polymers: Approaches to design and development. New York: M. Dekker, 1988.
Buscar texto completoSelander, Carl E. Applications development of concrete polymer materials: A summary report. Denver, Colo: Concrete and Structural Branch, Division of Research and Laboratory Services, Engineering and Research Center, U.S. Dept. of the Interior, Bureau of Reclamation, 1985.
Buscar texto completoSelander, Carl E. Applications development of concrete polymer materials: A summary report. Denver, Colo: Concrete and Structural Branch, Division of Research and Laboratory Services, Engineering and Research Center, U.S. Dept. of the Interior, Bureau of Reclamation, 1985.
Buscar texto completoM, Cunha António, Fakirov Stoĭko y NATO Advanced Study Institute on Structure Development in Processing for Polymer Property Enhancement (1999 : Caminha, Portugal), eds. Structure development during polymer processing. Dordrecht: Kluwer Academic Publishers, 2000.
Buscar texto completoMay, David. Integrated Product Development with Fiber-Reinforced Polymers. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-73407-7.
Texto completoSeymour, Raymond B. y Gerald S. Kirshenbaum, eds. High Performance Polymers: Their Origin and Development. Dordrecht: Springer Netherlands, 1986. http://dx.doi.org/10.1007/978-94-011-7073-4.
Texto completoWyn, Brown, ed. Light scattering: Principles and development. Oxford: Clarendon Press, 1996.
Buscar texto completo1912-, Seymour Raymond Benedict, Kirshenbaum Gerald S y American Chemical Society Meeting, eds. High performance polymers, their origin and development: Proceedings of the Symposium on the History of High Performance Polymers at the American Chemical Society Meeting held in New York, April 15-18, 1986. New York: Elsevier, 1986.
Buscar texto completoCapítulos de libros sobre el tema "Development of Polymers"
Gooch, Jan W. "Bulk Development". En Encyclopedic Dictionary of Polymers, 98. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4419-6247-8_1663.
Texto completoUnterman, Shimon A., Norman A. Marcus y Jennifer H. Elisseeff. "Injectable Polymers". En Biodegradable Polymers in Clinical Use and Clinical Development, 631–64. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2011. http://dx.doi.org/10.1002/9781118015810.ch17.
Texto completoLópez-López, Lluvia Itzel. "Tendencies in Development of Biodegradable Polymers". En Biodegradable Polymers, 260–71. Boca Raton: CRC Press, 2023. http://dx.doi.org/10.1201/9781003230533-18.
Texto completoWalter, Serge. "Teaching Sustainable Development". En Environmental Impact of Polymers, 357–61. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2014. http://dx.doi.org/10.1002/9781118827116.ch16.
Texto completoHacker, Nigel P. "Photoresists and Their Development". En Processes in Photoreactive Polymers, 368–403. Boston, MA: Springer US, 1995. http://dx.doi.org/10.1007/978-1-4615-1767-2_11.
Texto completoSalmon, G. Arthur. "Development of Radiation Chemistry". En Polymers for High Technology, 5–15. Washington, DC: American Chemical Society, 1987. http://dx.doi.org/10.1021/bk-1987-0346.ch001.
Texto completoBinoj, J. S., R. Edwin Raj y N. Manikandan. "Development of Bio-Composites From Industrial Discarded Fruit Fibers". En Natural Polymers, 41–68. Boca Raton: Apple Academic Press, 2022. http://dx.doi.org/10.1201/9781003130765-3.
Texto completoSelvaraj, Chandrabose y Sanjeev Kumar Singh. "Eco-friendly Microbial Biopolymers: Recent Development, Biodegradation, and Applications". En Microbial Polymers, 547–77. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-0045-6_22.
Texto completoFeller, Jean-François. "Different Strategies for Ecoplastics Development". En Environmental Impact of Polymers, 201–43. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2014. http://dx.doi.org/10.1002/9781118827116.ch10.
Texto completoAli, Akbar y Shakeel Ahmed. "Development of Hydrogels from Edible Polymers". En Polymers for Food Applications, 551–89. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-94625-2_21.
Texto completoActas de conferencias sobre el tema "Development of Polymers"
Deisenroth, David C., Martinus Adrian Arie, Serguei Dessiatoun, Amir Shooshtari, Michael Ohadi y Avram Bar-Cohen. "Review of Most Recent Progress on Development of Polymer Heat Exchangers for Thermal Management Applications". En ASME 2015 International Technical Conference and Exhibition on Packaging and Integration of Electronic and Photonic Microsystems collocated with the ASME 2015 13th International Conference on Nanochannels, Microchannels, and Minichannels. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/ipack2015-48637.
Texto completoAlexis, Dennis Arun, Do Hoon Kim, Varadarajan Dwarakanath, Taimur Malik, Greg Winslow, Sophany Thach, Adam Jackson et al. "Successful Development, Scale-Up and Field Deployment of High Activity Liquid Polymers". En International Petroleum Technology Conference. IPTC, 2022. http://dx.doi.org/10.2523/iptc-22655-ms.
Texto completoКамбарбекова, Р. М. "RHEOKINETIC REGULARITIES OF FORMATION PROCESS NANOSTRUCTURES BASED ON POLYETHOXYSILOXANE OLIGOMER". En Status and development trends of standardization and technical regulation in the world. Tashkent state technical university, 2022. http://dx.doi.org/10.51346/tstu-conf.22.1-77-0085.
Texto completoSiskind, Ryan D. y Ralph C. Smith. "Model development for shape memory polymers". En The 15th International Symposium on: Smart Structures and Materials & Nondestructive Evaluation and Health Monitoring, editado por Marcelo J. Dapino y Zoubeida Ounaies. SPIE, 2008. http://dx.doi.org/10.1117/12.777997.
Texto completo"Development of Polymer Impregnated Concrete". En SP-214: Polymers in Concrete: The First Thirty Years. American Concrete Institute, 2003. http://dx.doi.org/10.14359/12761.
Texto completoMcCann, Martin, Joseph F. Rovani y Kenneth P. Thomas. "Detection of Polymers in Asphalt Binders". En First Congress of Transportation and Development Institute (TDI). Reston, VA: American Society of Civil Engineers, 2011. http://dx.doi.org/10.1061/41167(398)50.
Texto completoPatel, Hasmukh, Kenneth Johnson y Roland Martinez. "Triazine Polymers for Improving Elastic Properties in Oil Well Cements". En SPE International Conference on Oilfield Chemistry. SPE, 2021. http://dx.doi.org/10.2118/204333-ms.
Texto completoPark, Jungho, K. Kim, J. I. Jin, S. Webster, R. Czerw, D. L. Carroll y Y. W. Park. "Development of Conducting Polymers towards Molecular Electronics". En 2004 International Conference on Solid State Devices and Materials. The Japan Society of Applied Physics, 2004. http://dx.doi.org/10.7567/ssdm.2004.f-7-1.
Texto completoAkle, Barbar J., Mike Hickner, Donald J. Leo y James E. McGrath. "Electroactive Polymers Based on Novel Ionomers". En ASME 2003 International Mechanical Engineering Congress and Exposition. ASMEDC, 2003. http://dx.doi.org/10.1115/imece2003-43561.
Texto completoBarroso-Solares, Suset, Beatriz Merillas, Eduardo López-González, Miguel Ángel Rodriguez-Perez y Javier Pinto. "DEVELOPMENT OF A POSTGRADUATE TRAINING PROGRAM ON SURFACE FUNCTIONALIZATION OF POLYMERS/POLYMER FOAMS". En 10th International Conference on Education and New Learning Technologies. IATED, 2018. http://dx.doi.org/10.21125/edulearn.2018.1481.
Texto completoInformes sobre el tema "Development of Polymers"
Bendikov, Michael y Thomas C. Harmon. Development of Agricultural Sensors Based on Conductive Polymers. United States Department of Agriculture, agosto de 2006. http://dx.doi.org/10.32747/2006.7591738.bard.
Texto completoBoydston, Andrew J. Development of Thermally- and Mechanically-Triggered Self-Immolative Polymers. Fort Belvoir, VA: Defense Technical Information Center, junio de 2015. http://dx.doi.org/10.21236/ad1001054.
Texto completoYu, Luping. Development of N- and P- Types of Semiconducting Polymers. Fort Belvoir, VA: Defense Technical Information Center, marzo de 2015. http://dx.doi.org/10.21236/ada615267.
Texto completoKhan, Fazeel J. Development of Morphing Structures for Aircraft Using Shape Memory Polymers. Fort Belvoir, VA: Defense Technical Information Center, agosto de 2008. http://dx.doi.org/10.21236/ada486742.
Texto completoKumudinie, C., J. K. Premachandra, J. E. Mark, M. R. Unroe y F. E. Arnold. Development of Some Promising Approaches for the Toughening of High-Temperature Polymers. Fort Belvoir, VA: Defense Technical Information Center, mayo de 1999. http://dx.doi.org/10.21236/ada363643.
Texto completoBertozzi, Carolyn R. Development and testing of new biologically-based polymers as advanced biocompatible contact lenses. Office of Scientific and Technical Information (OSTI), junio de 2000. http://dx.doi.org/10.2172/775141.
Texto completoHill, Richard A. Development of Highly Active Electro-Optic Polymers for In-Line Fiber Photonic Devices. Fort Belvoir, VA: Defense Technical Information Center, marzo de 1998. http://dx.doi.org/10.21236/ada345658.
Texto completoAdams, Caitlin J., Baishakhi Bose, Ethan Mann, Kendra A. Erk, Ali Behnood, Alberto Castillo, Fabian B. Rodriguez, Yu Wang y Jan Olek. Superabsorbent Polymers for Internally Cured Concrete. Purdue University, 2022. http://dx.doi.org/10.5703/1288284317366.
Texto completoVestal, Christy R. Collaborative Research and Development Delivery Order 0024: Synthesis, Processing, and Evaluation of Polymers for RF Applications. Fort Belvoir, VA: Defense Technical Information Center, enero de 2006. http://dx.doi.org/10.21236/ada462792.
Texto completoZhang, Q. M. Electric Field Induced Strain in Electrostrictive Polymers Under High Hydrostatic Pressure - System Development and Material Characterization. Fort Belvoir, VA: Defense Technical Information Center, julio de 2000. http://dx.doi.org/10.21236/ada379630.
Texto completo