Índice
Literatura académica sobre el tema "Déroulement profond"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Déroulement profond".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Déroulement profond"
Ruat, Thibault. "La synchronisation intra et inter organisationnelle des parties prenantes dans le secteur du bâtiment". Management & Sciences Sociales N° 19, n.º 2 (1 de julio de 2015): 91–106. http://dx.doi.org/10.3917/mss.019.0091.
Texto completoZumstein, Jean. "Exclusion de la synagogue et construction de l’identité croyante dans les communautés johanniques". Revue de Théologie et de Philosophie 152, n.º 4 (28 de enero de 2021): 379–93. http://dx.doi.org/10.47421/rthph152_4_379-393.
Texto completoMonnier, A. "La conjoncture démographique". Population Vol. 41, n.º 4 (1 de abril de 1986): 823–45. http://dx.doi.org/10.3917/popu.p1986.41n4-5.0845.
Texto completoDeramaix, Antoine. "La révolte samienne, une affaire de pérée". Revue des Études Anciennes 117, n.º 1 (2015): 3–25. http://dx.doi.org/10.3406/rea.2015.5910.
Texto completoMuresan, Cornelia. "L'évolution démographique en Roumanie : tendances passées (1948-1994) et perspectives d'avenir (1995-2030)". Population Vol. 51, n.º 4 (1 de abril de 1996): 813–44. http://dx.doi.org/10.3917/popu.p1996.51n4-5.0844.
Texto completoMény, Yves. "Constitutionnalisme et Conseil Constitutionnel: une révolution encore inachevée". Tocqueville Review 9, n.º 1 (enero de 1988): 243–60. http://dx.doi.org/10.3138/ttr.9.1.243.
Texto completoMény, Yves. "Constitutionnalisme et Conseil Constitutionnel: une révolution encore inachevée". Tocqueville Review 9 (enero de 1988): 243–60. http://dx.doi.org/10.3138/ttr.9.243.
Texto completoDavid, Béatrice. "Des offrandes aux ancêtres et des jeux. Agir pour le bon déroulement du nouveau cycle annuel lors des rassemblements saisonniers sur les collines rituelles du twa en pays sui (Chine du sud-ouest)". Cahiers d'Extrême-Asie 30, n.º 1 (2021): 211–46. http://dx.doi.org/10.3406/asie.2021.1572.
Texto completoDressler, Markus. "Le dede moderne : évolution des paramètres de l’autorité religieuse de l’alévisme dans la Turquie contemporaine". Sociologie et sociétés 38, n.º 1 (13 de octubre de 2006): 69–92. http://dx.doi.org/10.7202/013709ar.
Texto completoPelegrin, Jacques, Yoshihiro Aita y Ishiro Yamanaka. "Yokomichi : Une collection du Paléolithique supérieur du Japon abordée selon un œil technologique français". Journal of Lithic Studies 4, n.º 2 (15 de septiembre de 2017): 447–73. http://dx.doi.org/10.2218/jls.v4i2.2551.
Texto completoTesis sobre el tema "Déroulement profond"
Liu, Jiang. "Wireless Communications Assisted by Reconfigurable Intelligent Surfaces". Electronic Thesis or Diss., université Paris-Saclay, 2021. http://www.theses.fr/2021UPASG111.
Texto completoRecently, the emergence of reconfigurable intelligent surface (RIS) has attracted heated attention from both industry and academia. A RIS is a planar surface that consists of a large number of low-cost passive reflecting elements. By carefully adjusting the phase shifts of the reflecting elements, an RIS can reshape the wireless environment for better communication. In this thesis, we focus on two subjects: (i) To study the modeling and optimization of RIS-aided communication systems. (ii) To study RIS-aided spatial modulation, especially the detection using deep learning techniques. Chapter 1 introduces the concept of smart radio environments and RIS. In 5G and future communications, RIS is a key technique to achieve seamless connectivity and less energy consumption at the same time. Chapter 2 introduces RIS-aided communication systems. The reflection principle, channel estimation problem and system design problem are introduced in detail. State-of-the-art research on the problems of channel estimation and system design are overviewed. Chapter 3 investigates the distribution of the signal-to-noise ratio (SNR) as a random variable in an RIS-aided multiple-input multiple-output (MIMO) system. Rayleigh fading and line-of-sight propagation are considered separately. The theoretical derivation and numerical simulation prove that the SNR is equivalent in distribution to the product of three (Rayleigh fading) or two (line-of-sight propagation) independent random variables. Chapter 4 studies the behavior of interference in an RIS-aided MIMO system, where each base station serves a user equipment (UE) through an RIS. The interference at a UE is caused by its non-serving RIS. It is proven that the interference-to-noise ratio is equivalent in distribution to the product of a Chi-squared random variable and a random variable which can be approximated with a Gamma distribution. Chapter 5 focuses on RIS-aided spatial modulation. First, we introduce deep learning aided detection for MIMO systems. Then, by generalizing RIS-aided spatial modulation systems as a special case of traditional spatial modulation systems, we investigate deep learning based detection for RIS-aided spatial modulation systems. Numerical results validate the proposed data-based and model-based deep learning detection schemes for RIS-aided spatial modulation systems. Finally, Chapter 6 concludes the thesis and discusses possible future research directions
Mom, Kannara. "Deep learning based phase retrieval for X-ray phase contrast imaging". Electronic Thesis or Diss., Lyon, INSA, 2023. http://www.theses.fr/2023ISAL0087.
Texto completoThe development of highly coherent X-ray sources, such as third-generation synchrotron radiation facilities, has significantly contributed to the advancement of phase contrast imaging. The high degree of coherence of these sources enables efficient implementation of phase contrast techniques, and can increase sensitivity by several orders of magnitude. This novel imaging technique has found applications in a wide range of fields, including material science, paleontology, bone research, medicine, and biology. It enables the imaging of samples with low absorption constituents, where traditional absorption-based methods may fail to provide sufficient contrast. Several phase-sensitive imaging techniques have been developed, among them, propagation-based imaging requires no equipment other than the source, object and detector. Although the intensity can be measured at one or several propagation distances, the phase information is lost and must be estimated from those diffraction patterns, a process called phase retrieval. Phase retrieval in this context is a nonlinear ill-posed inverse problem. Various classical methods have been proposed to retrieve the phase, either by linearizing the problem to obtain an analytical solution, or by iterative algorithms. The main purpose of this thesis was to study what new deep learning approaches could bring to this phase retrieval problem. Various deep learning algorithms have been proposed and evaluated to address this problem. In the first part of this work, we show how neural networks can be used to reconstruct directly from measurements data, without model information. The architecture of the Mixed Scale Dense Network (MS-D Net) is introduced, combining dilated convolution and dense connection. In the second part of this thesis, we propose a nonlinear primal–dual algorithm for the retrieval of phase shift and absorption from a single X-ray in-line phase contrast. We showed that choosing different regularizers for absorption and phase can improve the reconstructions. In the third part, we propose to integrate neural networks into an existing optimization scheme using so-called unrolling approaches, in order to give the convolutional neural networks a specific role in the reconstruction. The performance of theses algorithms are evaluated using simulated noisy data as well as images acquired at NanoMAX (MAX IV, Lund, Sweden)