Literatura académica sobre el tema "Dendritic Spine Plasticity"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Dendritic Spine Plasticity".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Dendritic Spine Plasticity"
Power, John M. y Pankaj Sah. "Dendritic spine heterogeneity and calcium dynamics in basolateral amygdala principal neurons". Journal of Neurophysiology 112, n.º 7 (1 de octubre de 2014): 1616–27. http://dx.doi.org/10.1152/jn.00770.2013.
Texto completoRosado, James, Viet Duc Bui, Carola A. Haas, Jürgen Beck, Gillian Queisser y Andreas Vlachos. "Calcium modeling of spine apparatus-containing human dendritic spines demonstrates an “all-or-nothing” communication switch between the spine head and dendrite". PLOS Computational Biology 18, n.º 4 (25 de abril de 2022): e1010069. http://dx.doi.org/10.1371/journal.pcbi.1010069.
Texto completoRosado, James, Viet Duc Bui, Carola A. Haas, Jürgen Beck, Gillian Queisser y Andreas Vlachos. "Calcium modeling of spine apparatus-containing human dendritic spines demonstrates an “all-or-nothing” communication switch between the spine head and dendrite". PLOS Computational Biology 18, n.º 4 (25 de abril de 2022): e1010069. http://dx.doi.org/10.1371/journal.pcbi.1010069.
Texto completoLee, Kevin F. H., Cary Soares y Jean-Claude Béïque. "Examining Form and Function of Dendritic Spines". Neural Plasticity 2012 (2012): 1–9. http://dx.doi.org/10.1155/2012/704103.
Texto completoBloodgood, Brenda L. y Bernardo L. Sabatini. "Neuronal Activity Regulates Diffusion Across the Neck of Dendritic Spines". Science 310, n.º 5749 (3 de noviembre de 2005): 866–69. http://dx.doi.org/10.1126/science.1114816.
Texto completoCalabrese, Barbara, Margaret S. Wilson y Shelley Halpain. "Development and Regulation of Dendritic Spine Synapses". Physiology 21, n.º 1 (febrero de 2006): 38–47. http://dx.doi.org/10.1152/physiol.00042.2005.
Texto completoYu, Wendou y Bingwei Lu. "Synapses and Dendritic Spines as Pathogenic Targets in Alzheimer’s Disease". Neural Plasticity 2012 (2012): 1–8. http://dx.doi.org/10.1155/2012/247150.
Texto completoKhanal, Pushpa y Pirta Hotulainen. "Dendritic Spine Initiation in Brain Development, Learning and Diseases and Impact of BAR-Domain Proteins". Cells 10, n.º 9 (12 de septiembre de 2021): 2392. http://dx.doi.org/10.3390/cells10092392.
Texto completoRoszkowska, Matylda, Anna Skupien, Tomasz Wójtowicz, Anna Konopka, Adam Gorlewicz, Magdalena Kisiel, Marek Bekisz et al. "CD44: a novel synaptic cell adhesion molecule regulating structural and functional plasticity of dendritic spines". Molecular Biology of the Cell 27, n.º 25 (15 de diciembre de 2016): 4055–66. http://dx.doi.org/10.1091/mbc.e16-06-0423.
Texto completoDittmer, Philip J., Mark L. Dell’Acqua y William A. Sather. "Synaptic crosstalk conferred by a zone of differentially regulated Ca2+ signaling in the dendritic shaft adjoining a potentiated spine". Proceedings of the National Academy of Sciences 116, n.º 27 (17 de junio de 2019): 13611–20. http://dx.doi.org/10.1073/pnas.1902461116.
Texto completoTesis sobre el tema "Dendritic Spine Plasticity"
Critchlow, Hannah Marion. "The role of dendritic spine plasticity in schizophrenia". Thesis, University of Cambridge, 2008. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.612238.
Texto completoPfeiffer, Thomas. "Super-resolution STED and two-photon microscopy of dendritic spine and microglial dynamics". Thesis, Bordeaux, 2017. http://www.theses.fr/2017BORD0743/document.
Texto completoActivity-dependent changes in neuronal connectivity are thought to underlie learning and memory. I developed and applied novel high-resolution imaging-based approaches to study (i) microglia-spine interactions and (ii) the turnover of dendritic spines in the mouse hippocampus, which are both thought to contribute to the remodeling of synaptic circuits underlying memory formation. (i) Microglia have been implicated in a variety of novel tasks beyond their classic immune defensive roles. I examined the effect of synaptic plasticity on microglial morphological dynamics and interactions with spines, using a combination of electrophysiology and two-photon microscopy in acute brain slices. I demonstrated that microglia intensify their physical interactions with spines after the induction of hippocampal synaptic plasticity. To study these interactions and their functional impact in greater detail, I optimized and applied time-lapse STED imaging in acute brain slices. (ii) Spine structural plasticity is thought to underpin memory formation. Yet, we know very little about it in the hippocampus in vivo, which is the archetypical memory center of the mammalian brain. I established chronic in vivo STED imaging of hippocampal spines in the living mouse using a modified cranial window technique. The super-resolution approach revealed a spine density that was two times higher than reported in the two-photon literature, and a spine turnover of 40% over 5 days, indicating a high level of structural remodeling of hippocampal synaptic circuits. The developed super-resolution imaging approaches enable the examination of microglia-synapse interactions and dendritic spines with unprecedented resolution in the living brain (tissue)
Chiang, Chih-Yuan. "Cortical development & plasticity in the FMRP KO mouse". Thesis, University of Edinburgh, 2016. http://hdl.handle.net/1842/22055.
Texto completoO'Donnell, Cian. "Implications of stochastic ion channel gating and dendritic spine plasticity for neural information processing and storage". Thesis, University of Edinburgh, 2012. http://hdl.handle.net/1842/5886.
Texto completoZhang, Shengxiang. "Imaging dendritic spine structural plasticity during development in vitro and after acute stroke in vivo". Thesis, University of British Columbia, 2006. http://hdl.handle.net/2429/31194.
Texto completoMedicine, Faculty of
Graduate
Robertson, Holly Rochelle. "Regulation of dendritic spine structure and function by A-kinase anchoring protein 79/150 /". Connect to full text via ProQuest. Limited to UCD Anschutz Medical Campus, 2008.
Buscar texto completoTypescript. Includes bibliographical references (leaves 135-162). Free to UCD affiliates. Online version available via ProQuest Digital Dissertations;
Bauer, Rachel J. "THE EFFECTS OF LONG-TERM DEAFNESS ON DENSITY AND DIAMETER OF DENDRITIC SPINES ON PYRAMIDAL NEURONS IN THE DORSAL ZONE OF THE FELINE AUDITORY CORTEX". VCU Scholars Compass, 2019. https://scholarscompass.vcu.edu/etd/6028.
Texto completoVETERE, GISELLA. "Neuronal plasticity of hippocampal and cortical circuitry modulates the formation and extinction of remote adversive memories". Doctoral thesis, Università degli Studi di Roma "Tor Vergata", 2010. http://hdl.handle.net/2108/1179.
Texto completoIt is generally believed that in order to enable long-term episodic memory, the information is temporarily stored in the hippocampus where it remains vulnerable to interference. Via a slow read-out process, the information is transferred into other brain structures where the memory is established and no longer vulnerable to interference. This slow read-out is termed consolidation (Mueller and Pilzecker, 1900). The mechanisms by which memories can be acquired and consolidated in the mammalian brain are assumed to involve modifications in structural plasticity (Cajal, 1891). The main goal of this work is to discover the morphological modification requested in memory formation and extinction. In study I we shown that plastic changes (i.e. dendritic spine density increase) immediately develop in CA1 field of the hippocampus after a training in the contextual fear conditioning. These modifications are only transient because they disappear 36 days later, while an inverse pattern of spine density in recent and remote memory recall were found in the anterior cingulate cortex. In study II we block the possibility to increase the number of spines in the aCC after training and we found an early temporal window in which synaptic remodelling occurring in this region is fundamental for the correct consolidation of memory. In study III we presented a new and conflicting memory (extinction) after the consolidation of an old one, founding a disruption of the synaptic network in the aCC field. At the same time, we found an increase of connectivity in the Infra limbic cortex induced by consolidation that persist after extinction. Our results point on a dynamic view of memory consolidation: a regulated balance of synaptic stability and synaptic plasticity is required for optimal memory retention to allow the incorporation of new memories in neuronal circuits.
Hamel, Michelle Grace. "Modulation of neural plasticity by the ADAMTSs (a disintegrin and metalloproteinase with thrombospondin motifs)". [Tampa, Fla] : University of South Florida, 2006. http://purl.fcla.edu/usf/dc/et/SFE0001684.
Texto completoChen, Jian Hua [Verfasser], Peter Jomo [Akademischer Betreuer] Walla, Reinhard [Akademischer Betreuer] Jahn y Andreas [Akademischer Betreuer] Janshoff. "Spatial-temporal actin dynamics during synaptic plasticity of single dendritic spine investigated by two-photon fluorescence correlation spectroscopy / Jian Hua Chen. Gutachter: Reinhard Jahn ; Andreas Janshoff. Betreuer: Peter Jomo Walla". Göttingen : Niedersächsische Staats- und Universitätsbibliothek Göttingen, 2013. http://d-nb.info/1045776246/34.
Texto completoLibros sobre el tema "Dendritic Spine Plasticity"
Rasia-Filho, Alberto A., Rochelle S. Cohen y Oliver von Bohlen und Halbach, eds. Frontiers in Synaptic Plasticity: Dendritic Spines, Circuitries and Behavior. Frontiers Media SA, 2016. http://dx.doi.org/10.3389/978-2-88919-947-1.
Texto completoKoch, Christof. Biophysics of Computation. Oxford University Press, 1998. http://dx.doi.org/10.1093/oso/9780195104912.001.0001.
Texto completoCapítulos de libros sobre el tema "Dendritic Spine Plasticity"
Rall, Wilfrid y Idan Segev. "Dendritic Spine Synapses, Excitable Spine Clusters, and Plasticity". En Cellular Mechanisms of Conditioning and Behavioral Plasticity, 221–36. Boston, MA: Springer US, 1988. http://dx.doi.org/10.1007/978-1-4757-9610-0_22.
Texto completoKreutz, M. R., I. König, M. Mikhaylova, C. Spilker y W. Zuschratter. "Molecular Mechanisms of Dendritic Spine Plasticity in Development and Aging". En Handbook of Neurochemistry and Molecular Neurobiology, 245–59. Boston, MA: Springer US, 2008. http://dx.doi.org/10.1007/978-0-387-32671-9_10.
Texto completoJohansson, B. B. y P. V. Belichenko. "Environmental Influence on Neuronal and Dendritic Spine Plasticity After Permanent Focal Brain Ischemia". En Maturation Phenomenon in Cerebral Ischemia IV, 77–83. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/978-3-642-59446-5_10.
Texto completoPenzes, Peter y Igor Rafalovich. "Regulation of the Actin Cytoskeleton in Dendritic Spines". En Synaptic Plasticity, 81–95. Vienna: Springer Vienna, 2012. http://dx.doi.org/10.1007/978-3-7091-0932-8_4.
Texto completoDe Roo, Mathias y Adema Ribic. "Analyzing Structural Plasticity of Dendritic Spines in Organotypic Slice Culture". En Methods in Molecular Biology, 277–89. New York, NY: Springer New York, 2016. http://dx.doi.org/10.1007/978-1-4939-6688-2_19.
Texto completoStein, Ivar S., Travis C. Hill, Won Chan Oh, Laxmi K. Parajuli y Karen Zito. "Two-Photon Glutamate Uncaging to Study Structural and Functional Plasticity of Dendritic Spines". En Neuromethods, 65–85. New York, NY: Springer New York, 2019. http://dx.doi.org/10.1007/978-1-4939-9702-2_4.
Texto completoMakino, Hiroshi y Bo Li. "Monitoring Synaptic Plasticity by Imaging AMPA Receptor Content and Dynamics on Dendritic Spines". En Methods in Molecular Biology, 269–75. Totowa, NJ: Humana Press, 2013. http://dx.doi.org/10.1007/978-1-62703-444-9_25.
Texto completoKoch, Christof. "Dendritic Spines". En Biophysics of Computation. Oxford University Press, 1998. http://dx.doi.org/10.1093/oso/9780195104912.003.0018.
Texto completoLuine, Victoria N. y Maya Frankfurt. "Estrogenic Regulation of Recognition Memory and Spinogenesis". En Estrogens and Memory, 159–69. Oxford University Press, 2020. http://dx.doi.org/10.1093/oso/9780190645908.003.0011.
Texto completoAmmassari-Teule, Martine y Menahem Segal. "Dendritic Spine Plasticity and Memory Formation". En Learning and Memory: A Comprehensive Reference, 199–215. Elsevier, 2017. http://dx.doi.org/10.1016/b978-0-12-809324-5.21113-9.
Texto completoActas de conferencias sobre el tema "Dendritic Spine Plasticity"
Elibol, Rahmi. "A computational model of the growth of dendritic spines with synaptic plasticity". En 2022 30th Signal Processing and Communications Applications Conference (SIU). IEEE, 2022. http://dx.doi.org/10.1109/siu55565.2022.9864973.
Texto completoBasu, Subhadip, Punam K. Saha, Jakub Wlodarczyk, Marta Magnowska, Matylda Babraj, Nirmal Das, Ewa Baczynska y Indranil Guha. "Segmentation and assessment of structural plasticity of hippocampal dendritic spines from 3D confocal light microscopy". En Biomedical Applications in Molecular, Structural, and Functional Imaging, editado por Barjor Gimi y Andrzej Krol. SPIE, 2018. http://dx.doi.org/10.1117/12.2292924.
Texto completo