Literatura académica sobre el tema "Delegated quantum computing"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Delegated quantum computing".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Delegated quantum computing"
Morimae, Tomoyuki y Takeshi Koshiba. "Impossibility of perfectly-secure one-round delegated quantum computing for classical client". Quantum Information and Computation 19, n.º 3&4 (marzo de 2019): 214–21. http://dx.doi.org/10.26421/qic19.3-4-2.
Texto completoKashefi, Elham y Anna Pappa. "Multiparty Delegated Quantum Computing". Cryptography 1, n.º 2 (30 de julio de 2017): 12. http://dx.doi.org/10.3390/cryptography1020012.
Texto completoLiu, Zhixin, Qiaoling Xie, Yongfu Zha y Yumin Dong. "Quantum delegated computing ciphertext retrieval scheme". Journal of Applied Physics 131, n.º 4 (31 de enero de 2022): 044401. http://dx.doi.org/10.1063/5.0080097.
Texto completoMorimae, Tomoyuki y Harumichi Harumichi Nishimura. "Rational proofs for quantum computing". Quantum Information and Computation 20, n.º 3&4 (marzo de 2020): 181–93. http://dx.doi.org/10.26421/qic20.3-4-1.
Texto completoSun, Wenli, Yan Chang, Danchen Wang, Shibin Zhang y Lili Yan. "Delegated quantum neural networks for encrypted data". Physica Scripta 99, n.º 5 (29 de marzo de 2024): 055102. http://dx.doi.org/10.1088/1402-4896/ad348f.
Texto completoDoosti, Mina, Niraj Kumar, Mahshid Delavar y Elham Kashefi. "Client-server Identification Protocols with Quantum PUF". ACM Transactions on Quantum Computing 2, n.º 3 (30 de septiembre de 2021): 1–40. http://dx.doi.org/10.1145/3484197.
Texto completoMorimae, Tomoyuki, Harumichi Nishimura, Yuki Takeuch y Seiichiro Tani. "Impossibility of blind quantum sampling for classical client". quantum Information and Computation 19, n.º 9&10 (septiembre de 2019): 793–806. http://dx.doi.org/10.26421/qic19.9-10-3.
Texto completoMorimae, Tomoyuki. "Secure Cloud Quantum Computing with Verification Based on Quantum Interactive Proof". Impact 2019, n.º 10 (30 de diciembre de 2019): 30–32. http://dx.doi.org/10.21820/23987073.2019.10.30.
Texto completoEfthymiou, Stavros, Alvaro Orgaz-Fuertes, Rodolfo Carobene, Juan Cereijo, Andrea Pasquale, Sergi Ramos-Calderer, Simone Bordoni et al. "Qibolab: an open-source hybrid quantum operating system". Quantum 8 (12 de febrero de 2024): 1247. http://dx.doi.org/10.22331/q-2024-02-12-1247.
Texto completoMorimae, Tomoyuki, Vedran Dunjko y Elham Kashefi. "Ground state blind quantum computation on AKLT state". Quantum Information and Computation 15, n.º 3&4 (marzo de 2015): 200–234. http://dx.doi.org/10.26421/qic15.3-4-2.
Texto completoTesis sobre el tema "Delegated quantum computing"
Colisson, Léo. "Study of Protocols Between Classical Clients and a Quantum Server". Electronic Thesis or Diss., Sorbonne université, 2022. http://www.theses.fr/2022SORUS105.
Texto completoQuantum computers promise surprising powers of computation by exploiting the stunning physical properties of infinitesimally small particles. I focused on designing and proving the security of protocols that allow a purely classical client to use the computational resources of a quantum server, so that the performed computation is never revealed to the server. To this end, I develop a modular tool to generate on a remote server a quantum state that only the client is able to describe, and I show how multi-qubits quantum states can be generated more efficiently. I also prove that there is no such protocol that is secure in a generally composable model of security, including when our module is used in the UBQC protocol. In addition to delegated computation, this tool also proves to be useful for performing a task that might seem impossible to achieve at first sight: proving advanced properties on a quantum state in a non-interactive and non-destructive way, including when this state is generated collaboratively by several participants. This can be seen as a quantum analogue of the classical Non-Interactive Zero-Knowledge proofs. This property is particularly useful to filter the participants of a protocol without revealing their identity, and may have applications in other domains, for example to transmit a quantum state over a network while hiding the source and destination of the message. Finally, I discuss my ongoing independent work on One-Time Programs, mixing quantum cryptography, error correcting codes and information theory
Capítulos de libros sobre el tema "Delegated quantum computing"
Badertscher, Christian, Alexandru Cojocaru, Léo Colisson, Elham Kashefi, Dominik Leichtle, Atul Mantri y Petros Wallden. "Security Limitations of Classical-Client Delegated Quantum Computing". En Advances in Cryptology – ASIACRYPT 2020, 667–96. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-64834-3_23.
Texto completoActas de conferencias sobre el tema "Delegated quantum computing"
Ma, Shuquan, Xuchao Liu, Huagui Li y Heliang Song. "Multiparty Secure Delegated Quantum Computation". En 2023 International Conference on Networks, Communications and Intelligent Computing (NCIC). IEEE, 2023. http://dx.doi.org/10.1109/ncic61838.2023.00024.
Texto completoAmoretti, Michele. "Private Set Intersection with Delegated Blind Quantum Computing". En GLOBECOM 2021 - 2021 IEEE Global Communications Conference. IEEE, 2021. http://dx.doi.org/10.1109/globecom46510.2021.9685125.
Texto completoKim, Bong Gon, Dennis Wong y Yoon Seok Yang. "Private and Secure Post-quantum Verifiable Random Function with NIZK Proof and Ring-LWE Encryption in Blockchain". En 3rd International Conference on Cryptography and Blockchain. Academy & Industry Research Collaboration Center, 2023. http://dx.doi.org/10.5121/csit.2023.132104.
Texto completo