Siga este enlace para ver otros tipos de publicaciones sobre el tema: Degree sum.

Artículos de revistas sobre el tema "Degree sum"

Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros

Elija tipo de fuente:

Consulte los 50 mejores artículos de revistas para su investigación sobre el tema "Degree sum".

Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.

También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.

Explore artículos de revistas sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.

1

Boregowda, H. S. y R. B. Jummannaver. "Neighbors degree sum energy of graphs". Journal of Applied Mathematics and Computing 67, n.º 1-2 (20 de enero de 2021): 579–603. http://dx.doi.org/10.1007/s12190-020-01480-y.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Liu, Ze-meng y Li-ming Xiong. "Degree sum conditions for hamiltonian index". Applied Mathematics-A Journal of Chinese Universities 36, n.º 3 (septiembre de 2021): 403–11. http://dx.doi.org/10.1007/s11766-021-3885-4.

Texto completo
Resumen
AbstractIn this note, we show a sharp lower bound of $$\min \left\{{\sum\nolimits_{i = 1}^k {{d_G}({u_i}):{u_1}{u_2} \ldots {u_k}}} \right.$$ min { ∑ i = 1 k d G ( u i ) : u 1 u 2 … u k is a path of (2-)connected G on its order such that (k-1)-iterated line graphs Lk−1(G) are hamiltonian.
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

MacHale, Desmond. "Degree Sum Deficiency in Finite Groups". Mathematical Proceedings of the Royal Irish Academy 115A, n.º 1 (2015): 1–11. http://dx.doi.org/10.1353/mpr.2015.0007.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Flandrin, E., H. A. Jung y H. Li. "Hamiltonism, degree sum and neighborhood intersections". Discrete Mathematics 90, n.º 1 (junio de 1991): 41–52. http://dx.doi.org/10.1016/0012-365x(91)90094-i.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Stephen Buckley, Desmond MacHale y Áine Ní Shé. "Degree Sum Deficiency in Finite Groups". Mathematical Proceedings of the Royal Irish Academy 115A, n.º 1 (2015): 1. http://dx.doi.org/10.3318/pria.2015.115.6.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Mohammed, K. Saleel y Raji Pilakkat. "Minimum inclusive degree sum dominating set". Malaya Journal of Matematik 8, n.º 4 (2020): 1885–89. http://dx.doi.org/10.26637/mjm0804/0091.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Faudree, Jill, Ralph J. Faudree, Ronald J. Gould, Paul Horn y Michael S. Jacobson. "Degree sum and vertex dominating paths". Journal of Graph Theory 89, n.º 3 (20 de abril de 2018): 250–65. http://dx.doi.org/10.1002/jgt.22249.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Hu, Zhi-quan y Feng Tian. "On k-ordered Graphs Involved Degree Sum". Acta Mathematicae Applicatae Sinica, English Series 19, n.º 1 (marzo de 2003): 97–106. http://dx.doi.org/10.1007/s10255-003-0085-3.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Ferrara, Michael, Michael Jacobson y Jeffrey Powell. "Characterizing degree-sum maximal nonhamiltonian bipartite graphs". Discrete Mathematics 312, n.º 2 (enero de 2012): 459–61. http://dx.doi.org/10.1016/j.disc.2011.08.029.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Liu, Jianping, Aimei Yu, Keke Wang y Hong-Jian Lai. "Degree sum and hamiltonian-connected line graphs". Discrete Mathematics 341, n.º 5 (mayo de 2018): 1363–79. http://dx.doi.org/10.1016/j.disc.2018.02.008.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
11

B., Basavanagoud y Chitra E. "Degree square sum equienergetic and hyperenergetic graphs". Malaya Journal of Matematik 8, n.º 2 (abril de 2020): 301–5. http://dx.doi.org/10.26637/mjm0802/0001.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
12

Sharp, Jonathan. "Sum of the parts; my degree course". Electronics Education 1995, n.º 1 (1995): 38–40. http://dx.doi.org/10.1049/ee.1995.0022.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
13

Fan, Genghua y Chuixiang Zhou. "Degree sum and nowhere-zero 3-flows". Discrete Mathematics 308, n.º 24 (diciembre de 2008): 6233–40. http://dx.doi.org/10.1016/j.disc.2007.11.045.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
14

Hu, Zhiquan y Hao Li. "Weak cycle partition involving degree sum conditions". Discrete Mathematics 309, n.º 4 (marzo de 2009): 647–54. http://dx.doi.org/10.1016/j.disc.2007.12.081.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
15

Mukungunugwa, Vivian y Simon Mukwembi. "On eccentric distance sum and minimum degree". Discrete Applied Mathematics 175 (octubre de 2014): 55–61. http://dx.doi.org/10.1016/j.dam.2014.05.019.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
16

Ellingham, M. N., Xiaoya Zha y Yi Zhang. "Spanning 2-trails from degree sum conditions". Journal of Graph Theory 45, n.º 4 (2004): 298–319. http://dx.doi.org/10.1002/jgt.10162.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
17

Gurjar, Jeetendra y Sudhir Raghunath Jog. "Degree Sum Exponent Distance Energy of Some Graphs". Journal of the Indonesian Mathematical Society 27, n.º 1 (31 de marzo de 2021): 64–74. http://dx.doi.org/10.22342/jims.27.1.931.64-74.

Texto completo
Resumen
The degree sum exponent distance matrix M(G)of a graph G is a square matrix whose (i,j)-th entry is (di+dj)^ d(ij) whenever i not equal to j, otherwise it is zero, where di is the degree of i-th vertex of G and d(ij)=d(vi,vj) is distance between vi and vj. In this paper, we define degree sum exponent distance energy E(G) as sum of absolute eigenvalues of M(G). Also, we obtain some bounds on the degree sum exponent distance energy of some graphs and deduce direct expressions for some graphs.
Los estilos APA, Harvard, Vancouver, ISO, etc.
18

Akka, Danappa G., G. K. Dayanand y Shabbir Ahmed. "EDGE DEGREE WEIGHT SUM OF PRODUCTS, SUM(JOIN) AND CORONA OF THREE GRAPHS". Far East Journal of Applied Mathematics 90, n.º 1 (12 de marzo de 2015): 1–19. http://dx.doi.org/10.17654/fjamjan2015_001_019.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
19

Basavanagoud, B. y Chitra E. "Degree Square Sum Polynomial of some Special Graphs". International Journal of Applied Engineering Research 13, n.º 19 (15 de octubre de 2018): 14060. http://dx.doi.org/10.37622/ijaer/13.19.2018.14060-14078.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
20

Opie, Greg. "Expansion by Degree: The Sum of All Essays". New Writing 4, n.º 2 (15 de octubre de 2007): 118–33. http://dx.doi.org/10.2167/new428.0.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
21

Okamura, Haruko y Tomoki Yamashita. "Degree Sum Conditions for Cyclability in Bipartite Graphs". Graphs and Combinatorics 29, n.º 4 (17 de marzo de 2012): 1077–85. http://dx.doi.org/10.1007/s00373-012-1148-0.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
22

Ota, Katsuhiro. "Cycles through prescribed vertices with large degree sum". Discrete Mathematics 145, n.º 1-3 (octubre de 1995): 201–10. http://dx.doi.org/10.1016/0012-365x(94)00036-i.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
23

Lv, Sheng-xiang, Meng-da Fu y Yan-pei Liu. "Up-embeddability of graphs with new degree-sum". Acta Mathematicae Applicatae Sinica, English Series 33, n.º 1 (febrero de 2017): 169–74. http://dx.doi.org/10.1007/s10255-017-0647-4.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
24

Chen, Zhi-Hong. "Supereulerian graphs, independent sets, and degree-sum conditions". Discrete Mathematics 179, n.º 1-3 (enero de 1998): 73–87. http://dx.doi.org/10.1016/s0012-365x(97)00028-9.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
25

Malafiejski, Michal, Krzysztof Giaro, Robert Janczewski y Marek Kubale. "Sum Coloring of Bipartite Graphs with Bounded Degree". Algorithmica 40, n.º 4 (20 de agosto de 2004): 235–44. http://dx.doi.org/10.1007/s00453-004-1111-4.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
26

Yang, Fan y Xiangwen Li. "Degree sum of 3 independent vertices andZ3-connectivity". Discrete Mathematics 313, n.º 21 (noviembre de 2013): 2493–505. http://dx.doi.org/10.1016/j.disc.2013.07.009.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
27

Gould, Ronald J., Kazuhide Hirohata y Ariel Keller. "On vertex-disjoint cycles and degree sum conditions". Discrete Mathematics 341, n.º 1 (enero de 2018): 203–12. http://dx.doi.org/10.1016/j.disc.2017.08.030.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
28

Basavanagoud, B. y Anand P. Barangi. "Degree Sum Polynomial Obtained by Some Graph Operators". Journal of Computer and Mathematical Sciences 9, n.º 8 (6 de agosto de 2018): 977–1000. http://dx.doi.org/10.29055/jcms/836.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
29

Yamashita, Tomoki. "Degree sum and connectivity conditions for dominating cycles". Discrete Mathematics 308, n.º 9 (mayo de 2008): 1620–27. http://dx.doi.org/10.1016/j.disc.2007.04.019.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
30

Qiao, Shengning y Shenggui Zhang. "Degree sum conditions for oriented forests in digraphs". Discrete Mathematics 309, n.º 13 (julio de 2009): 4642–45. http://dx.doi.org/10.1016/j.disc.2009.01.023.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
31

Zhang, Xiaoxia, Mingquan Zhan, Rui Xu, Yehong Shao, Xiangwen Li y Hong-Jian Lai. "Degree sum condition for Z3-connectivity in graphs". Discrete Mathematics 310, n.º 23 (diciembre de 2010): 3390–97. http://dx.doi.org/10.1016/j.disc.2010.08.004.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
32

Fan, Genghua. "Degree sum for a triangle in a graph". Journal of Graph Theory 12, n.º 2 (1988): 249–63. http://dx.doi.org/10.1002/jgt.3190120216.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
33

Christopher, A. David. "Remainder sum and quotient sum function". Discrete Mathematics, Algorithms and Applications 07, n.º 01 (2 de febrero de 2015): 1550001. http://dx.doi.org/10.1142/s1793830915500019.

Texto completo
Resumen
This paper is concerned with two arithmetical functions namely remainder sum function and quotient sum function which are respectively the sequences A004125 and A006218 in Online Encyclopedia of Integer Sequences. The remainder sum function is defined by [Formula: see text] for every positive integer n, and quotient sum function is defined by [Formula: see text] where q(n, i) is the quotient obtained when n is divided by i. We establish few divisibility properties these functions enjoy and we found their bounds. Furthermore, we define restricted remainder sum function by RA(n) = ∑k∈A n mod k where A is a set of positive integers and we define restricted quotient sum function by QA(n) = ∑k∈A q(n, k). The function QA(n) is found to be a quasi-polynomial of degree one when A is a finite set of positive integers and RA(n) is found to be a periodic function with period ∏a∈A a. Finally, the above defined four functions found to have recurrence relation whose derivation requires few results from integer partition theory.
Los estilos APA, Harvard, Vancouver, ISO, etc.
34

Wang, Shilin, Zhou Bo y Nenad Trinajstic. "On the sum-connectivity index". Filomat 25, n.º 3 (2011): 29–42. http://dx.doi.org/10.2298/fil1103029w.

Texto completo
Resumen
The sum-connectivity index of a simple graph G is defined in mathematical chemistry as R+(G) = ? uv?E(G)(du+dv)?1/2, where E(G) is the edge set of G and du is the degree of vertex u in G. We give a best possible lower bound for the sum-connectivity index of a graph (a triangle-free graph, respectively) with n vertices and minimum degree at least two and characterize the extremal graphs, where n ? 11.
Los estilos APA, Harvard, Vancouver, ISO, etc.
35

Chen, Mei, Mei Zhang, Ming Li, Mingwei Leng, Zhichong Yang y Xiaofang Wen. "Detecting communities by suspecting the maximum degree nodes". International Journal of Modern Physics B 33, n.º 13 (20 de mayo de 2019): 1950133. http://dx.doi.org/10.1142/s0217979219501339.

Texto completo
Resumen
Detecting the natural communities in a real-world network can uncover its underlying structure and potential function. In this paper, a novel community algorithm SUM is introduced. The fundamental idea of SUM is that a node with relatively low degree stays faithful to its community, because it only has links with nodes in one community, while a node with relatively high degree not only has links with nodes within but also outside its community, and this may cause confusion when detecting communities. Based on this idea, SUM detects communities by suspecting the links of the maximum degree nodes to their neighbors within a community, and relying mainly on the nodes with relatively low degree simultaneously. SUM elegantly defines a similarity which takes into account both the commonality and the rejective degree of two adjacent nodes. After putting similar nodes into one community, SUM generates initial communities by reassigning the maximum degree nodes. Next, SUM assigns nodes without labels to the initial communities, and adjusts the border node to its most linked community. To evaluate the effectiveness of SUM, SUM is compared with seven baselines, including four classical and three state-of-the-art methods on a wide range of complex networks. On the small size networks with ground-truth community structures, results are visually demonstrated, as well as quantitatively measured with ARI, NMI and Modularity. On the relatively large size networks without ground-truth community structures, the performances of these algorithms are evaluated according to Modularity. Experimental results indicate that SUM can effectively determine community structures on small or relatively large size networks with high quality, and also outperforms the compared state-of-the-art methods.
Los estilos APA, Harvard, Vancouver, ISO, etc.
36

Laib, Ilias y Nadir Rezzoug. "On a sum over primitive sequences of finite degree". Mathematica Montisnigri 53 (2022): 26–32. http://dx.doi.org/10.20948/mathmontis-2022-53-4.

Texto completo
Resumen
A sequence of strictly positive integers is said to be primitive if none of its terms divides the others and is said to be homogeneous if the number of prime factors of its terms counted with multiplicity is constant. In this paper, we construct primitive sequences A of degree d, for which the Erdős’s analogous conjecture for translated sums is not satisfied.
Los estilos APA, Harvard, Vancouver, ISO, etc.
37

Nicholson, Emlee W. y Bing Wei. "Degree Sum Condition for k-ordered Hamiltonian Connected Graphs". Graphs and Combinatorics 31, n.º 3 (24 de diciembre de 2013): 743–55. http://dx.doi.org/10.1007/s00373-013-1393-x.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
38

Elliott, Bradley, Ronald J. Gould y Kazuhide Hirohata. "On Degree Sum Conditions and Vertex-Disjoint Chorded Cycles". Graphs and Combinatorics 36, n.º 6 (21 de septiembre de 2020): 1927–45. http://dx.doi.org/10.1007/s00373-020-02227-z.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
39

Yan, Jin, Shaohua Zhang, Yanyan Ren y Junqing Cai. "Degree sum conditions on two disjoint cycles in graphs". Information Processing Letters 138 (octubre de 2018): 7–11. http://dx.doi.org/10.1016/j.ipl.2018.05.004.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
40

Jiao, Zhihui, Hong Wang y Jin Yan. "Disjoint cycles in graphs with distance degree sum conditions". Discrete Mathematics 340, n.º 6 (junio de 2017): 1203–9. http://dx.doi.org/10.1016/j.disc.2017.01.013.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
41

Chen, Guantao, Shuya Chiba, Ronald J. Gould, Xiaofeng Gu, Akira Saito, Masao Tsugaki y Tomoki Yamashita. "Spanning bipartite graphs with high degree sum in graphs". Discrete Mathematics 343, n.º 2 (febrero de 2020): 111663. http://dx.doi.org/10.1016/j.disc.2019.111663.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
42

Chen, Guantao y Michael S. Jacobson. "Degree Sum Conditions for Hamiltonicity on k-Partite Graphs". Graphs and Combinatorics 13, n.º 4 (diciembre de 1997): 325–43. http://dx.doi.org/10.1007/bf03353011.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
43

Hua, Hongbo, Hongzhuan Wang y Xiaolan Hu. "On eccentric distance sum and degree distance of graphs". Discrete Applied Mathematics 250 (diciembre de 2018): 262–75. http://dx.doi.org/10.1016/j.dam.2018.04.011.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
44

Coll, Vincent E., Colton Magnant y Pouria Salehi Nowbandegani. "Degree sum and graph linkage with prescribed path lengths". Discrete Applied Mathematics 257 (marzo de 2019): 85–94. http://dx.doi.org/10.1016/j.dam.2018.09.008.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
45

Jiong-Sheng, Li y Song Zi-Xia. "The smallest degree sum that yields potentiallyPk-graphical sequences". Journal of Graph Theory 29, n.º 2 (octubre de 1998): 63–72. http://dx.doi.org/10.1002/(sici)1097-0118(199810)29:2<63::aid-jgt2>3.0.co;2-a.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
46

Beierle, Christof, Alex Biryukov y Aleksei Udovenko. "On degree-d zero-sum sets of full rank". Cryptography and Communications 12, n.º 4 (19 de noviembre de 2019): 685–710. http://dx.doi.org/10.1007/s12095-019-00415-0.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
47

DAI, Guowei. "Degree sum and restricted {P2,P5}-factor in graphs". Proceedings of the Romanian Academy, Series A: Mathematics, Physics, Technical Sciences, Information Science 24, n.º 2 (28 de junio de 2023): 105–11. http://dx.doi.org/10.59277/pra-ser.a.24.2.01.

Texto completo
Resumen
"For a graph $G$, a spanning subgraph $F$ of $G$ is called a $\{P_2,P_5\}$-factor if every component of $F$ is isomorphic to $P_2$ or $P_5$, where $P_i$ denotes the path of order $i$. A graph $G$ is called a $(\{P_2,P_5\},k)$-factor critical graph if $G-V'$ contains a $\{P_2,P_5\}$-factor for any $V'\subseteq V(G)$ with $|V'|=k$. A graph $G$ is called a $(\{P_2,P_5\},m)$-factor deleted graph if $G-E'$ has a $\{P_2,P_5\}$-factor for any $E'\subseteq E(G)$ with $|E'|=m$. The degree sum of $G$ is defined by $$\sigma_{r+1}(G)=\min_{X\subseteq V(G)}\Big\{\sum_{x\in X}d_G(x): X~\mathrm{is~an~independent~set~of}~r+1~\mathrm{vertices}\Big\}.$$ In this paper, using degree sum conditions, we demonstrate that (i) $G$ is a $(\{P_2,P_5\},k)$-factor critical graph if $\sigma_{r+1}(G)>\frac{(3n+4k-2)(r+1)}{7}$ and $\kappa(G)\geq k+r$; (ii) $G$ is a $(\{P_2,P_5\},m)$-factor deleted graph if $\sigma_{r+1}(G)>\frac{(3n+2m-2)(r+1)}{7}$ and $\kappa(G)\geq\frac{5m}{4}+r$."
Los estilos APA, Harvard, Vancouver, ISO, etc.
48

Molina, Edil D., Paul Bosch, José M. Sigarreta y Eva Tourís. "On the variable inverse sum deg index". Mathematical Biosciences and Engineering 20, n.º 5 (2023): 8800–8813. http://dx.doi.org/10.3934/mbe.2023387.

Texto completo
Resumen
<abstract><p>Several important topological indices studied in mathematical chemistry are expressed in the following way $ \sum_{uv \in E(G)} F(d_u, d_v) $, where $ F $ is a two variable function that satisfies the condition $ F(x, y) = F(y, x) $, $ uv $ denotes an edge of the graph $ G $ and $ d_u $ is the degree of the vertex $ u $. Among them, the variable inverse sum deg index $ IS\!D_a $, with $ F(d_u, d_v) = 1/(d_u^a+d_v^a) $, was found to have several applications. In this paper, we solve some problems posed by Vukičević <sup>[<xref ref-type="bibr" rid="b1">1</xref>]</sup>, and we characterize graphs with maximum and minimum values of the $ IS\!D_a $ index, for $ a &lt; 0 $, in the following sets of graphs with $ n $ vertices: graphs with fixed minimum degree, connected graphs with fixed minimum degree, graphs with fixed maximum degree, and connected graphs with fixed maximum degree. Also, we performed a QSPR analysis to test the predictive power of this index for some physicochemical properties of polyaromatic hydrocarbons.</p></abstract>
Los estilos APA, Harvard, Vancouver, ISO, etc.
49

Revankar, D. S., Jaishri B. Veeragoudar y M. M. Patil. "On the degree sum energy of total transformation graphs of regular graphs". Journal of Information & Optimization Sciences 44, n.º 2 (2023): 217–29. http://dx.doi.org/10.47974/jios-1220.

Texto completo
Resumen
The energy E(G) of a graph G is the sum of absolute values of the eigenvalues of the adjacency matrix of G. This definition of energy was motivated by the large number of results for the Huckel molecular orbital total π-electron energy. Motivated by E(G), The degree sum energy EDS(G) of a simple connected graph G is defined by sum of the absolute values of all eigenvalues of degree sum matrix. In this paper, we obtain spectra and degree sum energy of the total transformation graph Gxyz of a r-regular graph.
Los estilos APA, Harvard, Vancouver, ISO, etc.
50

GILLOT, VALÉRIE y PHILIPPE LANGEVIN. "ESTIMATION OF SOME EXPONENTIAL SUM BY MEANS OF q-DEGREE". Glasgow Mathematical Journal 52, n.º 2 (29 de marzo de 2010): 315–24. http://dx.doi.org/10.1017/s0017089510000017.

Texto completo
Resumen
AbstractIn this paper, we improve results of Gillot, Kumar and Moreno to estimate some exponential sums by means of q-degrees. The method consists in applying suitable elementary transformations to see an exponential sum over a finite field as an exponential sum over a product of subfields in order to apply Deligne bound. In particular, we obtain new results on the spectral amplitude of some monomials.
Los estilos APA, Harvard, Vancouver, ISO, etc.
Ofrecemos descuentos en todos los planes premium para autores cuyas obras están incluidas en selecciones literarias temáticas. ¡Contáctenos para obtener un código promocional único!

Pasar a la bibliografía