Literatura académica sobre el tema "Defect recombination"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Defect recombination".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Defect recombination"
Saeed, Faisal, Muhammad Haseeb Khan, Haider Ali Tauqeer, Asfand Haroon, Asad Idrees, Syed Mzhar Shehrazi, Lukas Prokop, Vojtech Blazek, Stanislav Misak y Nasim Ullah. "Numerical Investigation of Photo-Generated Carrier Recombination Dynamics on the Device Characteristics for the Perovskite/Carbon Nitride Absorber-Layer Solar Cell". Nanomaterials 12, n.º 22 (15 de noviembre de 2022): 4012. http://dx.doi.org/10.3390/nano12224012.
Texto completoLausch, Dominik, Ronny Bakowskie, Michael Lorenz, S. Schweizer, Kai Petter y Christian Hagendorf. "Classification of Recombination-Active Defects in Multicrystalline Solar Cells Made from Upgraded Metallurgical Grade (UMG) Silicon". Solid State Phenomena 178-179 (agosto de 2011): 88–93. http://dx.doi.org/10.4028/www.scientific.net/ssp.178-179.88.
Texto completoXu, Xin, Zhenyuan Wu, Zebin Zhao, Zhengli Lu, Yujia Gao, Xi Huang, Jiawei Huang et al. "First-principles study of detrimental iodine vacancy in lead halide perovskite under strain and electron injection". Applied Physics Letters 121, n.º 9 (29 de agosto de 2022): 092106. http://dx.doi.org/10.1063/5.0107441.
Texto completoVoronkov, Vladimir V. y Robert Falster. "Light-Induced Boron-Oxygen Recombination Centres in Silicon: Understanding their Formation and Elimination". Solid State Phenomena 205-206 (octubre de 2013): 3–14. http://dx.doi.org/10.4028/www.scientific.net/ssp.205-206.3.
Texto completoStorasta, L., F. H. C. Carlsson, Peder Bergman y Erik Janzén. "Recombination Enhanced Defect Annealing in 4H-SiC". Materials Science Forum 483-485 (mayo de 2005): 369–72. http://dx.doi.org/10.4028/www.scientific.net/msf.483-485.369.
Texto completoKlein, Paul B., Rachael L. Myers-Ward, Kok Keong Lew, Brenda L. VanMil, Charles R. Eddy, D. Kurt Gaskill, Amitesh Shrivastava y Tangali S. Sudarshan. "Temperature Dependence of the Carrier Lifetime in 4H-SiC Epilayers". Materials Science Forum 645-648 (abril de 2010): 203–6. http://dx.doi.org/10.4028/www.scientific.net/msf.645-648.203.
Texto completoПещерова, С. М., Е. Б. Якимов, А. И. Непомнящих, В. И. Орлов, О. В. Феклисова, Л. А. Павлова y Р. В. Пресняков. "Зависимость объемных электрофизических свойств мультикремния от параметров разориентации зерен". Физика и техника полупроводников 53, n.º 1 (2019): 59. http://dx.doi.org/10.21883/ftp.2019.01.46988.8814.
Texto completoGrant, Nicholas E., Fiacre E. Rougieux y Daniel Macdonald. "Low Temperature Activation of Grown-In Defects Limiting the Lifetime of High Purity n-Type Float-Zone Silicon Wafers". Solid State Phenomena 242 (octubre de 2015): 120–25. http://dx.doi.org/10.4028/www.scientific.net/ssp.242.120.
Texto completoHarada, Tomoki, Tetsuo Ikari y Atsuhiko Fukuyama. "Development of laser heterodyne photothermal displacement method for mapping carrier nonradiative recombination centers in semiconductors". Journal of Applied Physics 131, n.º 19 (21 de mayo de 2022): 195701. http://dx.doi.org/10.1063/5.0085041.
Texto completoHara, Tomohiko y Yoshio Ohshita. "Analysis of recombination centers near an interface of a metal–SiO2–Si structure by double carrier pulse deep-level transient spectroscopy". AIP Advances 12, n.º 9 (1 de septiembre de 2022): 095316. http://dx.doi.org/10.1063/5.0106319.
Texto completoTesis sobre el tema "Defect recombination"
Puttisong, Yuttapoom. "Spin-dependent Recombination in GaNAs". Thesis, Linköping University, Linköping University, Department of Physics, Chemistry and Biology, 2009. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-19355.
Texto completoSpin filtering properties of novel GaNAs alloys are reported in this thesis. Spin-dependent recombination (SDR) in GaNAs via a deep paramagnetic defect center is intensively studied. By using the optical orientation photoluminescence (PL) technique, GaNAs is shown to be able to spin filter electrons injected from GaAs, which is a useful functional property for integratition with future electronic devices. The spin filtering ability is found to degrade in narrow GaNAs quantum well (QW) structures which is attributed to (i) acceleration of band-to-band recombination competing with the SDR process and to (ii) faster electron spin relaxation in the narrow QWs. Ga interstitial-related defect centers have been found to be responsible for the SDR process by using the optically detected magnetic resonance (ODMR) technique. The defects are found to be the dominant grown-in defects in GaNAs, commonly formed during both MBE and MOCVD growths. Methods to control the concentration of the Ga interstitials by varying doping, growth parameters and post-growth treatments are also examined.
Thomas, Mélissa. "Origins of Cellular Lethality Resulting From a Defect in Homologous Recombination in Human Cells". Thesis, université Paris-Saclay, 2021. http://www.theses.fr/2021UPASL027.
Texto completoHomologous recombination (HR) is involved in repairing DNA double strand breaks, and in protecting and restarting stalled or collapsed replication forks. Rad51 and BRCA2 are two key proteins of HR. I have showed that inhibiting HR, as well as over expressing Rad51, is lethal in human cells, although a very few cells still survive the inhibition. Moreover, many cancers carry mutations in an HR gene (BRCA1/2 in breast and ovary cancers) or over express an HR gene. My project aims to identify the mechanisms and the causes behind the lethality triggered by a dysregulation of HR, and to understand how a few cells manage to survive it. I have determined, through FACS and phosphorylated histone H3 labeling (IF), that HR deficient human cells, or those over expressing Rad51, accumulate at the G2/M checkpoint.At the same time, time-lapse microscopy experiments seemed to indicate that the cells died from apoptosis, which was confirmed by data from experiments using Annexin-V as an apoptosis marker and from Western-Blots. Western-Blots showed that the G2/M checkpoint is activated, through analysis of CyclinB1 and of cdk1, and that apoptosis is triggered, through analysis of PARP cleavage. My main working hypothesis was that overexpressing a dominant negative form of Rad51, and possibly also overexpressing Rad51 WT, would lead to replication defects, whose accumulation would in turn lead to an activation of the checkpoint. BrdU incorporation experients and use of the molecular combing technique confirmed this hypothesis : in HR-dysregulated cells, replication speed is slowed down and there are more stalled forks. In-silico analyses have showed that HR-mutated cancers often carry a second mutation in another gene, involved in either the G2/M checkpoint or in restarting stalled replication forks. Based on these analyses and on results from RNAseq experiments performed on FANCD1 patients' fibroblasts, candidate genes have already been listed, confirming the in-silico analysis
Turcu, Mircea Cassian. "Defect energies, band alignments, and charge carrier recombination in polycrystalline Cu(In,Ga)(Se,S)2 alloys". Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2004. http://nbn-resolving.de/urn:nbn:de:swb:14-1086247686828-95497.
Texto completoTurcu, Mircea Cassian. "Defect energies, band alignments, and charge carrier recombination in polycrystalline Cu(In,Ga)(Se,S)2 alloys". Doctoral thesis, Technische Universität Dresden, 2003. https://tud.qucosa.de/id/qucosa%3A24342.
Texto completoSantos, Samantha Fonseca dos. "Theoretical and computational studies of dissociative recombination of H₃⁺ with low kinetic energy electrons time-independent and time-dependent approach /". Orlando, Fla. : University of Central Florida, 2009. http://purl.fcla.edu/fcla/etd/CFE0002668.
Texto completoPATRIZI, LAURA. "ANALYSIS OF B LYMPHOCYTES IN MOUSE MODEL LIGASE IV WITH HYPOMORPHIC MUTATION IN VDJ RECOMBINATION ASSOCIATED WITH GROWTH DEFECT". Doctoral thesis, Università degli Studi di Milano, 2010. http://hdl.handle.net/2434/150193.
Texto completoLam, N. D., S. Kim, J. J. Lee, K. R. Choi, M. H. Doan y H. Lim. "Enhanced Luminescence of InGaN / GaN Vertical Light Emitting Diodes with an InGaN Protection Layer". Thesis, Sumy State University, 2013. http://essuir.sumdu.edu.ua/handle/123456789/35210.
Texto completoTurcu, Mircea C. [Verfasser]. "Defect energies, band alignments, and charge carrier recombination in polycrystalline Cu(In,Ga)(Se,S)2 alloys / Mircea C Turcu". Aachen : Shaker, 2004. http://d-nb.info/1170529550/34.
Texto completoSteingrube, Silke [Verfasser]. "Recombination models for defects in silicon solar cells / Silke Steingrube". Hannover : Technische Informationsbibliothek und Universitätsbibliothek Hannover (TIB), 2011. http://d-nb.info/1015460577/34.
Texto completoRUCCI, FRANCESCA. "Murine models of hypomorphic defects of v(d)j recombination". Doctoral thesis, Università degli Studi di Milano, 2009. http://hdl.handle.net/2434/155853.
Texto completoLibros sobre el tema "Defect recombination"
Orton, J. W. The electrical characterization of semiconductors: Measurement of minority carrier properties. London: Academic Press, 1990.
Buscar texto completoDavidson, J. A. Minority carrier processes and recombination at point and extended defects in silicon. Manchester: UMIST, 1996.
Buscar texto completoMultiphonon Recombination at Defects in Semiconductors. University of Cambridge ESOL Examinations, 2002.
Buscar texto completoOrton, J. W. y P. Blood. The Electrical Characterization of Semiconductors: Measurement of Minority Carrier Properties (Techniques of Physics). Academic Press, 1992.
Buscar texto completoVoll, Reinhard E. y Barbara M. Bröker. Innate vs acquired immunity. Oxford University Press, 2013. http://dx.doi.org/10.1093/med/9780199642489.003.0048.
Texto completoCapítulos de libros sobre el tema "Defect recombination"
Storasta, L., F. H. C. Carlsson, J. Peder Bergman y Erik Janzén. "Recombination Enhanced Defect Annealing in 4H-SiC". En Materials Science Forum, 369–72. Stafa: Trans Tech Publications Ltd., 2005. http://dx.doi.org/10.4028/0-87849-963-6.369.
Texto completoRedfield, David. "Recombination-Enhanced Defect Formation and Annealing in a-Si:H". En Disordered Semiconductors, 635–40. Boston, MA: Springer US, 1987. http://dx.doi.org/10.1007/978-1-4613-1841-5_67.
Texto completoTakagi, Hidekazu. "Extension of the Quantum Defect Theory and Its Application to Electron and Molecular Ion Collisions". En Dissociative Recombination of Molecular Ions with Electrons, 177–86. Boston, MA: Springer US, 2003. http://dx.doi.org/10.1007/978-1-4615-0083-4_17.
Texto completoMarino, F., S. Gialanella y R. Delorenzo. "Defect Recombination Phenomena in Melt-Spun Ordered Alloys of the Fe-Al System". En Ordering and Disordering in Alloys, 155–63. Dordrecht: Springer Netherlands, 1992. http://dx.doi.org/10.1007/978-94-011-2886-5_16.
Texto completovan der Burg, Mirjam, Andrew R. Gennery y Qiang Pan-Hammarström. "Class-Switch Recombination Defects". En Humoral Primary Immunodeficiencies, 179–99. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-91785-6_15.
Texto completoDurandy, A. y Sven Kracker. "Immunoglobulin Class Switch Recombination Defects". En Encyclopedia of Medical Immunology, 385–92. New York, NY: Springer New York, 2020. http://dx.doi.org/10.1007/978-1-4614-8678-7_34.
Texto completoDurandy, A. y S. Kracker. "Immunoglobulin Class Switch Recombination Defects". En Encyclopedia of Medical Immunology, 1–7. New York, NY: Springer New York, 2019. http://dx.doi.org/10.1007/978-1-4614-9209-2_34-1.
Texto completoBryant, Helen E. y Sydney Shall. "Synthetic Lethality with Homologous Recombination Repair Defects". En Cancer Drug Discovery and Development, 315–44. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-14151-0_13.
Texto completoKracker, Sven, Pauline Gardës y Anne Durandy. "Inherited Defects of Immunoglobulin Class Switch Recombination". En Advances in Experimental Medicine and Biology, 166–74. New York, NY: Springer New York, 2010. http://dx.doi.org/10.1007/978-1-4419-6448-9_15.
Texto completoWilshaw, P. R., T. S. Fell y G. R. Booker. "Recombination at Dislocations in Silicon and Gallium Arsenide". En Point and Extended Defects in Semiconductors, 243–56. Boston, MA: Springer US, 1989. http://dx.doi.org/10.1007/978-1-4684-5709-4_18.
Texto completoActas de conferencias sobre el tema "Defect recombination"
Benchiheb, Nedjoua, Asma Benchiheb, Yasmina Saidi y Hamza Lidjici. "Emitter Thickness and Solar Cell Efficiency: The Role of Deep-Level Defects and Auger Recombination". En 2024 3rd International Conference on Advanced Electrical Engineering (ICAEE), 1–7. IEEE, 2024. https://doi.org/10.1109/icaee61760.2024.10783184.
Texto completoSeghier, D., T. M. Arinbjarnason y H. P. Gislason. "Deep-defect related generation-recombination noise in GaAs". En 2004 13th International Conference on Semiconducting and Insulating Materials. IEEE, 2004. http://dx.doi.org/10.1109/sim.2005.1511426.
Texto completoLee, Jin Hee y Je-Hyung Kim. "Point and planar defect complex in SiC nanowires for high-performance quantum emitters". En Integrated Photonics Research, Silicon and Nanophotonics. Washington, D.C.: Optica Publishing Group, 2022. http://dx.doi.org/10.1364/iprsn.2022.iw2b.5.
Texto completoKhaital, Yu L., Joseph Salzman y R. Beserman. "Kinetics of gradual degradation in semiconductor lasers". En OSA Annual Meeting. Washington, D.C.: Optica Publishing Group, 1988. http://dx.doi.org/10.1364/oam.1988.mj7.
Texto completoBonfiglió, A., M. Vanzi, M. B. Casu, F. Magistrali, M. Maini y G. Salmini. "Interpretation of Sudden Failures in Pump Laser Diodes". En ISTFA 1997. ASM International, 1997. http://dx.doi.org/10.31399/asm.cp.istfa1997p0189.
Texto completoLee, Jin Hee y Je-Hyung Kim. "Strong Zero-Phonon Transition from Defects in SiC Nanowires with Stacking Faults". En Quantum 2.0. Washington, D.C.: Optica Publishing Group, 2023. http://dx.doi.org/10.1364/quantum.2023.qw2a.27.
Texto completoAskari, Syed Sadique Anwer, Manoj Kumar y Mukul Kumar Das. "Effects of Interface defect on the performance of ZnO/p-Si heterojunction solar cell". En JSAP-OSA Joint Symposia. Washington, D.C.: Optica Publishing Group, 2017. http://dx.doi.org/10.1364/jsap.2017.6p_a410_12.
Texto completoVerezub, N. y A. Prostomolotov. "DEFECT FORMATION IN DISLOCATION-FREE SILICON SINGLE CRYSTALS". En Mathematical modeling in materials science of electronic component. LCC MAKS Press, 2022. http://dx.doi.org/10.29003/m3091.mmmsec-2022/132-135.
Texto completoRacko, J., R. Granzner, P. Benko, M. Mikolasek, L. Harmatha, M. Kittler, F. Schwierz y J. Breza. "Model of coupled defect level recombination with participation of multiphonons". En 2014 10th International Conference on Advanced Semiconductor Devices & Microsystems (ASDAM). IEEE, 2014. http://dx.doi.org/10.1109/asdam.2014.6998674.
Texto completoGfroerer, T. H., P. R. Simov, B. A. West y M. W. Wanlass. "Defect-related trapping and recombination in metamorphic GaAs0.72P0.28 grown on GaAs". En 2008 33rd IEEE Photovolatic Specialists Conference (PVSC). IEEE, 2008. http://dx.doi.org/10.1109/pvsc.2008.4922904.
Texto completoInformes sobre el tema "Defect recombination"
Schild, David y Claudia Wiese. Overexpressed of RAD51 suppresses recombination defects: a possible mechanism to reverse genomic instability. Office of Scientific and Technical Information (OSTI), octubre de 2009. http://dx.doi.org/10.2172/983266.
Texto completo