Artículos de revistas sobre el tema "Deep Video Representations"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte los 50 mejores artículos de revistas para su investigación sobre el tema "Deep Video Representations".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Explore artículos de revistas sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.
Feichtenhofer, Christoph, Axel Pinz, Richard P. Wildes y Andrew Zisserman. "Deep Insights into Convolutional Networks for Video Recognition". International Journal of Computer Vision 128, n.º 2 (29 de octubre de 2019): 420–37. http://dx.doi.org/10.1007/s11263-019-01225-w.
Texto completoPandeya, Yagya Raj, Bhuwan Bhattarai y Joonwhoan Lee. "Deep-Learning-Based Multimodal Emotion Classification for Music Videos". Sensors 21, n.º 14 (20 de julio de 2021): 4927. http://dx.doi.org/10.3390/s21144927.
Texto completoLjubešić, Nikola. "‟Deep lexicography” – Fad or Opportunity?" Rasprave Instituta za hrvatski jezik i jezikoslovlje 46, n.º 2 (30 de octubre de 2020): 839–52. http://dx.doi.org/10.31724/rihjj.46.2.21.
Texto completoKumar, Vidit, Vikas Tripathi y Bhaskar Pant. "Learning Unsupervised Visual Representations using 3D Convolutional Autoencoder with Temporal Contrastive Modeling for Video Retrieval". International Journal of Mathematical, Engineering and Management Sciences 7, n.º 2 (14 de marzo de 2022): 272–87. http://dx.doi.org/10.33889/ijmems.2022.7.2.018.
Texto completoVihlman, Mikko y Arto Visala. "Optical Flow in Deep Visual Tracking". Proceedings of the AAAI Conference on Artificial Intelligence 34, n.º 07 (3 de abril de 2020): 12112–19. http://dx.doi.org/10.1609/aaai.v34i07.6890.
Texto completoRouast, Philipp V. y Marc T. P. Adam. "Learning Deep Representations for Video-Based Intake Gesture Detection". IEEE Journal of Biomedical and Health Informatics 24, n.º 6 (junio de 2020): 1727–37. http://dx.doi.org/10.1109/jbhi.2019.2942845.
Texto completoLi, Jialu, Aishwarya Padmakumar, Gaurav Sukhatme y Mohit Bansal. "VLN-Video: Utilizing Driving Videos for Outdoor Vision-and-Language Navigation". Proceedings of the AAAI Conference on Artificial Intelligence 38, n.º 17 (24 de marzo de 2024): 18517–26. http://dx.doi.org/10.1609/aaai.v38i17.29813.
Texto completoHu, Yueyue, Shiliang Sun, Xin Xu y Jing Zhao. "Multi-View Deep Attention Network for Reinforcement Learning (Student Abstract)". Proceedings of the AAAI Conference on Artificial Intelligence 34, n.º 10 (3 de abril de 2020): 13811–12. http://dx.doi.org/10.1609/aaai.v34i10.7177.
Texto completoDong, Zhen, Chenchen Jing, Mingtao Pei y Yunde Jia. "Deep CNN based binary hash video representations for face retrieval". Pattern Recognition 81 (septiembre de 2018): 357–69. http://dx.doi.org/10.1016/j.patcog.2018.04.014.
Texto completoPsallidas, Theodoros y Evaggelos Spyrou. "Video Summarization Based on Feature Fusion and Data Augmentation". Computers 12, n.º 9 (15 de septiembre de 2023): 186. http://dx.doi.org/10.3390/computers12090186.
Texto completoLiu, Shangdong, Puming Cao, Yujian Feng, Yimu Ji, Jiayuan Chen, Xuedong Xie y Longji Wu. "NRVC: Neural Representation for Video Compression with Implicit Multiscale Fusion Network". Entropy 25, n.º 8 (4 de agosto de 2023): 1167. http://dx.doi.org/10.3390/e25081167.
Texto completoPan, Haixia, Jiahua Lan, Hongqiang Wang, Yanan Li, Meng Zhang, Mojie Ma, Dongdong Zhang y Xiaoran Zhao. "UWV-Yolox: A Deep Learning Model for Underwater Video Object Detection". Sensors 23, n.º 10 (18 de mayo de 2023): 4859. http://dx.doi.org/10.3390/s23104859.
Texto completoGad, Gad, Eyad Gad, Korhan Cengiz, Zubair Fadlullah y Bassem Mokhtar. "Deep Learning-Based Context-Aware Video Content Analysis on IoT Devices". Electronics 11, n.º 11 (4 de junio de 2022): 1785. http://dx.doi.org/10.3390/electronics11111785.
Texto completoLin, Jie, Ling-Yu Duan, Shiqi Wang, Yan Bai, Yihang Lou, Vijay Chandrasekhar, Tiejun Huang, Alex Kot y Wen Gao. "HNIP: Compact Deep Invariant Representations for Video Matching, Localization, and Retrieval". IEEE Transactions on Multimedia 19, n.º 9 (septiembre de 2017): 1968–83. http://dx.doi.org/10.1109/tmm.2017.2713410.
Texto completoZhang, Huijun, Ling Feng, Ningyun Li, Zhanyu Jin y Lei Cao. "Video-Based Stress Detection through Deep Learning". Sensors 20, n.º 19 (28 de septiembre de 2020): 5552. http://dx.doi.org/10.3390/s20195552.
Texto completoJiang, Pin y Yahong Han. "Reasoning with Heterogeneous Graph Alignment for Video Question Answering". Proceedings of the AAAI Conference on Artificial Intelligence 34, n.º 07 (3 de abril de 2020): 11109–16. http://dx.doi.org/10.1609/aaai.v34i07.6767.
Texto completoMumtaz, Nadia, Naveed Ejaz, Suliman Aladhadh, Shabana Habib y Mi Young Lee. "Deep Multi-Scale Features Fusion for Effective Violence Detection and Control Charts Visualization". Sensors 22, n.º 23 (1 de diciembre de 2022): 9383. http://dx.doi.org/10.3390/s22239383.
Texto completoWu, Lin, Yang Wang, Ling Shao y Meng Wang. "3-D PersonVLAD: Learning Deep Global Representations for Video-Based Person Reidentification". IEEE Transactions on Neural Networks and Learning Systems 30, n.º 11 (noviembre de 2019): 3347–59. http://dx.doi.org/10.1109/tnnls.2019.2891244.
Texto completoMeshchaninov, Viacheslav Pavlovich, Ivan Andreevich Molodetskikh, Dmitriy Sergeevich Vatolin y Alexey Gennadievich Voloboy. "Combining contrastive and supervised learning for video super-resolution detection". Keldysh Institute Preprints, n.º 80 (2022): 1–13. http://dx.doi.org/10.20948/prepr-2022-80.
Texto completoHuang, Shaonian, Dongjun Huang y Xinmin Zhou. "Learning Multimodal Deep Representations for Crowd Anomaly Event Detection". Mathematical Problems in Engineering 2018 (2018): 1–13. http://dx.doi.org/10.1155/2018/6323942.
Texto completoKumar, Vidit, Vikas Tripathi, Bhaskar Pant, Sultan S. Alshamrani, Ankur Dumka, Anita Gehlot, Rajesh Singh, Mamoon Rashid, Abdullah Alshehri y Ahmed Saeed AlGhamdi. "Hybrid Spatiotemporal Contrastive Representation Learning for Content-Based Surgical Video Retrieval". Electronics 11, n.º 9 (24 de abril de 2022): 1353. http://dx.doi.org/10.3390/electronics11091353.
Texto completoXu, Ming, Xiaosheng Yu, Dongyue Chen, Chengdong Wu y Yang Jiang. "An Efficient Anomaly Detection System for Crowded Scenes Using Variational Autoencoders". Applied Sciences 9, n.º 16 (14 de agosto de 2019): 3337. http://dx.doi.org/10.3390/app9163337.
Texto completoBohunicky, Kyle Matthew. "Dear Punchy". Animal Crossing Special Issue 13, n.º 22 (16 de febrero de 2021): 39–58. http://dx.doi.org/10.7202/1075262ar.
Texto completoRezaei, Fariba y Mehran Yazdi. "A New Semantic and Statistical Distance-Based Anomaly Detection in Crowd Video Surveillance". Wireless Communications and Mobile Computing 2021 (15 de mayo de 2021): 1–9. http://dx.doi.org/10.1155/2021/5513582.
Texto completoDong, Wenkai, Zhaoxiang Zhang y Tieniu Tan. "Attention-Aware Sampling via Deep Reinforcement Learning for Action Recognition". Proceedings of the AAAI Conference on Artificial Intelligence 33 (17 de julio de 2019): 8247–54. http://dx.doi.org/10.1609/aaai.v33i01.33018247.
Texto completoNida, Nudrat, Muhammad Haroon Yousaf, Aun Irtaza y Sergio A. Velastin. "Instructor Activity Recognition through Deep Spatiotemporal Features and Feedforward Extreme Learning Machines". Mathematical Problems in Engineering 2019 (30 de abril de 2019): 1–13. http://dx.doi.org/10.1155/2019/2474865.
Texto completoHe, Dongliang, Zhichao Zhou, Chuang Gan, Fu Li, Xiao Liu, Yandong Li, Limin Wang y Shilei Wen. "StNet: Local and Global Spatial-Temporal Modeling for Action Recognition". Proceedings of the AAAI Conference on Artificial Intelligence 33 (17 de julio de 2019): 8401–8. http://dx.doi.org/10.1609/aaai.v33i01.33018401.
Texto completoSwinney, Carolyn J. y John C. Woods. "Unmanned Aerial Vehicle Operating Mode Classification Using Deep Residual Learning Feature Extraction". Aerospace 8, n.º 3 (16 de marzo de 2021): 79. http://dx.doi.org/10.3390/aerospace8030079.
Texto completoZhao, Hu, Yanyun Shen, Zhipan Wang y Qingling Zhang. "MFACNet: A Multi-Frame Feature Aggregating and Inter-Feature Correlation Framework for Multi-Object Tracking in Satellite Videos". Remote Sensing 16, n.º 9 (30 de abril de 2024): 1604. http://dx.doi.org/10.3390/rs16091604.
Texto completoKulvinder Singh, Et al. "Enhancing Multimodal Information Retrieval Through Integrating Data Mining and Deep Learning Techniques". International Journal on Recent and Innovation Trends in Computing and Communication 11, n.º 9 (30 de octubre de 2023): 560–69. http://dx.doi.org/10.17762/ijritcc.v11i9.8844.
Texto completoGovender, Divina y Jules-Raymond Tapamo. "Spatio-Temporal Scale Coded Bag-of-Words". Sensors 20, n.º 21 (9 de noviembre de 2020): 6380. http://dx.doi.org/10.3390/s20216380.
Texto completoHuang, Haofeng, Wenhan Yang, Lingyu Duan y Jiaying Liu. "Seeing Dark Videos via Self-Learned Bottleneck Neural Representation". Proceedings of the AAAI Conference on Artificial Intelligence 38, n.º 3 (24 de marzo de 2024): 2321–29. http://dx.doi.org/10.1609/aaai.v38i3.28006.
Texto completoDhar, Moloy. "Object Detection using Deep Learning Approach". International Journal for Research in Applied Science and Engineering Technology 10, n.º 6 (30 de junio de 2022): 2963–69. http://dx.doi.org/10.22214/ijraset.2022.44417.
Texto completoMishra,, Vaishnavi. "Synthetic Media Analysis Using Deep Learning". INTERANTIONAL JOURNAL OF SCIENTIFIC RESEARCH IN ENGINEERING AND MANAGEMENT 08, n.º 05 (7 de mayo de 2024): 1–5. http://dx.doi.org/10.55041/ijsrem32494.
Texto completoThakur, Amey. "Generative Adversarial Networks". International Journal for Research in Applied Science and Engineering Technology 9, n.º 8 (31 de agosto de 2021): 2307–25. http://dx.doi.org/10.22214/ijraset.2021.37723.
Texto completoWang, Bokun, Caiqian Yang y Yaojing Chen. "Detection Anomaly in Video Based on Deep Support Vector Data Description". Computational Intelligence and Neuroscience 2022 (4 de mayo de 2022): 1–6. http://dx.doi.org/10.1155/2022/5362093.
Texto completoChen, Shuang, Zengcai Wang y Wenxin Chen. "Driver Drowsiness Estimation Based on Factorized Bilinear Feature Fusion and a Long-Short-Term Recurrent Convolutional Network". Information 12, n.º 1 (22 de diciembre de 2020): 3. http://dx.doi.org/10.3390/info12010003.
Texto completoRezaei, Behnaz, Yiorgos Christakis, Bryan Ho, Kevin Thomas, Kelley Erb, Sarah Ostadabbas y Shyamal Patel. "Target-Specific Action Classification for Automated Assessment of Human Motor Behavior from Video". Sensors 19, n.º 19 (1 de octubre de 2019): 4266. http://dx.doi.org/10.3390/s19194266.
Texto completoBourai, Nour, Hayet Farida Merouani y Akila Djebbar. "Advanced Image Compression Techniques for Medical Applications: Survey". All Sciences Abstracts 1, n.º 1 (16 de abril de 2023): 1. http://dx.doi.org/10.59287/as-abstracts.444.
Texto completoMai Magdy, Fahima A. Maghraby y Mohamed Waleed Fakhr. "A 4D Convolutional Neural Networks for Video Violence Detection". Journal of Advanced Research in Applied Sciences and Engineering Technology 36, n.º 1 (24 de diciembre de 2023): 16–25. http://dx.doi.org/10.37934/araset.36.1.1625.
Texto completoChoi, Jinsoo y Tae-Hyun Oh. "Joint Video Super-Resolution and Frame Interpolation via Permutation Invariance". Sensors 23, n.º 5 (24 de febrero de 2023): 2529. http://dx.doi.org/10.3390/s23052529.
Texto completoKulkarni, Dr Shrinivasrao B., Abhishek Kuppelur, Akash Shetty, Shashank ,. Bidarakatti y Taranath Sangresakoppa. "Analysis of Physiotherapy Practices using Deep Learning". International Journal for Research in Applied Science and Engineering Technology 12, n.º 4 (30 de abril de 2024): 5084–89. http://dx.doi.org/10.22214/ijraset.2024.61194.
Texto completoLiu, Daizong, Dongdong Yu, Changhu Wang y Pan Zhou. "F2Net: Learning to Focus on the Foreground for Unsupervised Video Object Segmentation". Proceedings of the AAAI Conference on Artificial Intelligence 35, n.º 3 (18 de mayo de 2021): 2109–17. http://dx.doi.org/10.1609/aaai.v35i3.16308.
Texto completoSun, Zheng, Andrew W. Sumsion, Shad A. Torrie y Dah-Jye Lee. "Learning Facial Motion Representation with a Lightweight Encoder for Identity Verification". Electronics 11, n.º 13 (22 de junio de 2022): 1946. http://dx.doi.org/10.3390/electronics11131946.
Texto completoWagner, Travis L. y Ashley Blewer. "“The Word Real Is No Longer Real”: Deepfakes, Gender, and the Challenges of AI-Altered Video". Open Information Science 3, n.º 1 (1 de enero de 2019): 32–46. http://dx.doi.org/10.1515/opis-2019-0003.
Texto completoSharif, Md Haidar, Lei Jiao y Christian W. Omlin. "CNN-ViT Supported Weakly-Supervised Video Segment Level Anomaly Detection". Sensors 23, n.º 18 (7 de septiembre de 2023): 7734. http://dx.doi.org/10.3390/s23187734.
Texto completoJeon, DaeHyeon y Min-Suk Kim. "Deep-Learning-Based Sequence Causal Long-Term Recurrent Convolutional Network for Data Fusion Using Video Data". Electronics 12, n.º 5 (24 de febrero de 2023): 1115. http://dx.doi.org/10.3390/electronics12051115.
Texto completoWu, Sijie, Kai Zhang, Shaoyi Li y Jie Yan. "Learning to Track Aircraft in Infrared Imagery". Remote Sensing 12, n.º 23 (6 de diciembre de 2020): 3995. http://dx.doi.org/10.3390/rs12233995.
Texto completoKong, Weiqi. "Research Advanced in Multimodal Emotion Recognition Based on Deep Learning". Highlights in Science, Engineering and Technology 85 (13 de marzo de 2024): 602–8. http://dx.doi.org/10.54097/p3yprn36.
Texto completoTøttrup, Daniel, Stinus Lykke Skovgaard, Jonas le Fevre Sejersen y Rui Pimentel de Figueiredo. "A Fast and Accurate Approach to Multiple-Vehicle Localization and Tracking from Monocular Aerial Images". Journal of Imaging 7, n.º 12 (8 de diciembre de 2021): 270. http://dx.doi.org/10.3390/jimaging7120270.
Texto completo